People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lam, Charles Hoi King
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Utilization of Municipal Solid Waste Incineration Ash in Portland Cement Clinker
Abstract
Municipal solid waste incineration (MSWI) ash is used in part as raw materials for cement clinker production by taking advantage of the high contents of SiO(2), Al(2)O(3), and CaO. It is necessary for environmental reasons to establish a material utilization system for the incineration waste ash residue instead of disposing these ashes into landfill. The aim of this paper is to study the feasibility of replacing clinker raw materials by waste ash residue for cement clinker production. MSWI bottom ash and MSWI fly ash are the main types of ashes being evaluated. The ashes were mixed into raw mixture with different portions of ash residue to produce cement clinker in a laboratory furnace at approximately 1400A degrees C. X-ray diffraction and X-ray florescence techniques were used to analyze the phase chemistry and chemical composition of clinkers in order to compare these ash-based clinkers with commercial Portland cement clinker. © Springer-Verlag 2011.