Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Averbeck, Stefan

  • Google
  • 1
  • 9
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Tribologische Untersuchungen zur Entstehung von White Etching Cracks (WECs)11citations

Places of action

Chart of shared publication
Muhmann, Christian
1 / 2 shared
Lipinsky, Dieter
1 / 2 shared
Sauer, Bernd
1 / 2 shared
Terwey, Jan Torben
1 / 2 shared
Pape, Florian
1 / 43 shared
Wiesker, Sebastian
1 / 1 shared
Poll, Gerhard
1 / 41 shared
Arlinghaus, Heinrich F.
1 / 5 shared
Kerscher, Eberhard
1 / 6 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Muhmann, Christian
  • Lipinsky, Dieter
  • Sauer, Bernd
  • Terwey, Jan Torben
  • Pape, Florian
  • Wiesker, Sebastian
  • Poll, Gerhard
  • Arlinghaus, Heinrich F.
  • Kerscher, Eberhard
OrganizationsLocationPeople

article

Tribologische Untersuchungen zur Entstehung von White Etching Cracks (WECs)

  • Muhmann, Christian
  • Lipinsky, Dieter
  • Sauer, Bernd
  • Terwey, Jan Torben
  • Pape, Florian
  • Averbeck, Stefan
  • Wiesker, Sebastian
  • Poll, Gerhard
  • Arlinghaus, Heinrich F.
  • Kerscher, Eberhard
Abstract

<p>The aim of the presented research activities was to identify mechanical, thermal, and chemical factors possibly linked to the formation of WECs (White Etching Cracks). By means of a systematic variation of various influencing parameters, the significance of each of those was investigated. It is hoped that, once the parameters promoting WECs have been identified, the physical and chemical mechanisms responsible for WEC can be thoroughly understood in the near future. This would allow to prevent costly premature bearing failures, e. g. given in wind turbines. Four research centers in Kaiserslautern, Münster and Hannover (Institute of Machine Elements, Gears and Transmissions (MEGT), Technische Universität Kaiserslautern, Materials Testing Group (AWP), Technische Universität Kaiserslautern, Institute of Physics, Westfälische Wilhelms-Universität Münster, and Institute for Machine Design and Tribology (IMKT), Leibniz University Hannover) provide their expertise and laboratory facilities for this purpose. At IMKT full bearing investigations with cylindrical roller thrust bearings and model tests with a special ring-roller-ring tribometer were performed under varied test conditions. In a theoretical work package, the stresses induced to the bearing surface were simulated. At “Physikalisches Institut” in Münster surfaces of the bearing washers (and rolling elements) were analysed applying Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) to determine the actual respective chemical composition of the tribofilms. At MEGT component tests were carried out on a three-axis dynamic test rig with radially loaded cylindrical roller bearings. The internal bearing dynamics and, above all, the associated distribution of frictional energy were analysed by means of multi-body simulation. The AWP concentrated on synthesized multi-axial dynamic stresses aimed at mirroring the stresses in a rolling contact apllied on laboratory test specimens to investigate crack initiation and growth in depth.</p>

Topics
  • impedance spectroscopy
  • surface
  • simulation
  • crack
  • chemical composition
  • etching
  • spectrometry
  • selective ion monitoring
  • secondary ion mass spectrometry