Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Escudero-Escribano, Maria

  • Google
  • 1
  • 3
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Metallization of cyanide-modified Pt(111) electrodes with copper5citations

Places of action

Chart of shared publication
Wildi, Christopher
1 / 2 shared
Cuesta, Angel
1 / 10 shared
Mwanda, Jonathan A.
1 / 4 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Wildi, Christopher
  • Cuesta, Angel
  • Mwanda, Jonathan A.
OrganizationsLocationPeople

article

Metallization of cyanide-modified Pt(111) electrodes with copper

  • Wildi, Christopher
  • Cuesta, Angel
  • Escudero-Escribano, Maria
  • Mwanda, Jonathan A.
Abstract

The reduction of Cu2+ ions irreversibly anchored on the surface of a cyanide-modified Pt(111) electrode via non-covalent or weakly covalent interactions with the N atom of adsorbed cyanide was studied using cyclic voltammetry (CV) and in-situ scanning tunneling microscopy (STM). Both CV and STM provide evidence that the reduction of irreversibly adsorbed Cu2+ to Cu in Cu2+-free sulfuric acid solutions does not result in the stripping of the cyanide adlayer. This strongly suggests that the reduction process results in the metallization of the cyanide adlayer on Pt(111), yielding a platinum-cyanide-copper sandwich configuration. STM also shows that the Cu deposit consists of isolated bidimensional nanoislands, which slowly grow through an Ostwald ripening mechanism if the potential is kept negative of the reduction peak. Metallization is not possible in perchloric acid solutions, which implies that the specific adsorption of sulfate on the bidimensional Cu nanoislands plays an important role in stabilizing them. This was confirmed by the observation on the nanoislands, using in-situ STM, of the structure typical for adsorbed sulfate on the (111) faces of fcc.

Topics
  • impedance spectroscopy
  • surface
  • Platinum
  • copper
  • cyclic voltammetry
  • scanning tunneling microscopy
  • Ostwald ripening