Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hofer, Johannes

  • Google
  • 1
  • 2
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Characterization of electrical properties of n-conducting barium titanate as a function of dc-bias and ac-voltage amplitude by application of impedance spectroscopv14citations

Places of action

Chart of shared publication
Sitte, Werner
1 / 3 shared
Preis, Wolfgang
1 / 4 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Sitte, Werner
  • Preis, Wolfgang
OrganizationsLocationPeople

article

Characterization of electrical properties of n-conducting barium titanate as a function of dc-bias and ac-voltage amplitude by application of impedance spectroscopv

  • Sitte, Werner
  • Hofer, Johannes
  • Preis, Wolfgang
Abstract

The electrical properties of bulk and grain boundaries of donor-doped barium titanate ceramics have been characterized as a function of temperature (50–350 °C) and voltage load (up to 140 V) by application of impedance spectroscopy. Both the grain boundary resistivities and the steepness of the R-T characteristics are diminished significantly with increasing voltage load. While the grain boundary resistances are strongly affected by the applied electric field, the grain boundary capacitance is almost independent of the dc-bias. The non-linearity of the resistivity of n-conducting BaTiO3 has been investigated in detail by impedance spectroscopy as a function of dc-bias and a small ac-voltage signal as well as impedance measurements with high ac-voltage amplitudes (zero bias). The non-linear current response to high ac-voltage amplitudes at low frequencies (0.01 Hz) has been determined experimentally and analyzed by means of fast Fourier transform (FFT) as well as Lissajous analyses. Moreover, a finite element model (FEM) has been developed for the simulation of the ac-current response. The FEM calculations are in close agreement with the experimentally determined data for the variation of the grain boundary resistance with ac-voltage amplitude.

Topics
  • impedance spectroscopy
  • grain
  • resistivity
  • grain boundary
  • simulation
  • ceramic
  • Barium