Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Opallo, M.

  • Google
  • 7
  • 28
  • 172

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2009Hydrophilic carbon nanoparticle-laccase thin film electrode for mediatorless dioxygen reduction SECM activity mapping and application in zinc-dioxygen battery69citations
  • 2008Introducing hydrophilic carbon nanoparticles into hydrophilic sol-gel film electrodes36citations
  • 2007SnO2-poly(diallyldimethylammonium chloride) films: Electrochemical evidence for heme protein absorption, denaturation, and demetallation11citations
  • 2007A porous ITO nanoparticles modified electrode for the redox liquid immobilization23citations
  • 2005Effects of carbon nanofiber composites on electrode processes involving liquid vertical bar liquid ion transfer17citations
  • 2005Characterisation of biphasic electrodes based on the liquid N,N-didodecyl-N ' N '-diethylphenylenediamine redox system immobilised on porous hydrophobic silicates and immersed in aqueous media11citations
  • 2003Cyclic voltammetry and impedance spectroscopy studies of silver vanadate phosphate glasses5citations

Places of action

Chart of shared publication
Kirchner, C. N.
1 / 1 shared
Jonsson-Niedziolka, M.
1 / 1 shared
Marken, Frank
6 / 91 shared
Nogala, W.
2 / 2 shared
Szot, K.
3 / 9 shared
Niedziolka-Jonsson, J.
1 / 1 shared
Rogalski, J.
1 / 2 shared
Wittstock, G.
1 / 5 shared
Niedziolka, J.
3 / 3 shared
Macdonald, S. M.
1 / 1 shared
Milsom, E. V.
1 / 5 shared
Dash, H. A.
1 / 1 shared
Jenkins, T. A.
1 / 1 shared
Halliwell, C. M.
1 / 1 shared
Thetford, A.
1 / 1 shared
Bligh, N.
1 / 1 shared
Wilcox, G. D.
1 / 5 shared
Shul, G.
2 / 2 shared
Murphy, M. A.
1 / 1 shared
Palys, B.
1 / 1 shared
Rozniecka, E.
1 / 1 shared
Page, P. C. B.
1 / 1 shared
Buckley, B. R.
1 / 1 shared
Hayman, C. M.
1 / 1 shared
Mckenzie, K. J.
1 / 1 shared
Wasiucionek, Marek
1 / 26 shared
Machowski, P.
1 / 1 shared
Garbarczyk, Jerzy
1 / 29 shared
Chart of publication period
2009
2008
2007
2005
2003

Co-Authors (by relevance)

  • Kirchner, C. N.
  • Jonsson-Niedziolka, M.
  • Marken, Frank
  • Nogala, W.
  • Szot, K.
  • Niedziolka-Jonsson, J.
  • Rogalski, J.
  • Wittstock, G.
  • Niedziolka, J.
  • Macdonald, S. M.
  • Milsom, E. V.
  • Dash, H. A.
  • Jenkins, T. A.
  • Halliwell, C. M.
  • Thetford, A.
  • Bligh, N.
  • Wilcox, G. D.
  • Shul, G.
  • Murphy, M. A.
  • Palys, B.
  • Rozniecka, E.
  • Page, P. C. B.
  • Buckley, B. R.
  • Hayman, C. M.
  • Mckenzie, K. J.
  • Wasiucionek, Marek
  • Machowski, P.
  • Garbarczyk, Jerzy
OrganizationsLocationPeople

article

Introducing hydrophilic carbon nanoparticles into hydrophilic sol-gel film electrodes

  • Niedziolka, J.
  • Marken, Frank
  • Szot, K.
  • Macdonald, S. M.
  • Opallo, M.
Abstract

A hydrophilic carbon nanoparticle-sol-gel electrode with good electrical conductivity within the sol-gel matrix is prepared. Sulfonated carbon nanoparticles with high hydrophilicity and of 10-20 nm diameter (Emperor 2000) are co-deposited onto tin-doped indium oxide substrates employing a sol-gel technique. The resulting carbon nanoparticle-sol-gel composite electrodes are characterized as a function of composition and salt (KCl) additive. Scanning electron microscopy and voltammetry in the absence and in the presence of a solution redox system suggest that the composite electrode films can be made electrically conducting and highly porous to promote electron transport and transfer. The effect of the presence of hydrophilic carbon nanoparticles is explored for the following processes: (1) double layer charging, (2) diffusion and adsorption of the electrochemically reversible solution redox system 1,1'-ferrocenedimethanol, (3) electron transfer to the electrochemically irreversible redox system hydrogen peroxide, and (4) electron transfer to the redox liquid tert-butylferrocene deposited into the porous composite electrode film. The extended electrochemically active hydrophilic surface area is beneficial in particular for surface sensitive processes (1) and (3), and it provides an extended solid/organic liquid|aqueous solution boundary for reaction (4). The carbon nanoparticle-sol-gel composite electrodes are optimized to provide good electrical conductivity and to remain stable during electrochemical investigation.

Topics
  • nanoparticle
  • porous
  • impedance spectroscopy
  • surface
  • Carbon
  • scanning electron microscopy
  • composite
  • Hydrogen
  • tin
  • electrical conductivity
  • Indium
  • voltammetry