Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bornstein, Michael M.

  • Google
  • 1
  • 10
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Piranha-etched titanium nanostructure reduces biofilm formation in vitro7citations

Places of action

Chart of shared publication
Kühl, Sebastian
1 / 1 shared
Mukaddam, Khaled
1 / 1 shared
Fasler-Kan, Elizaveta
1 / 1 shared
Astasov-Frauenhoffer, Monika
1 / 1 shared
Alhawasli, Farah
1 / 1 shared
Ruggiero, Sabrina
1 / 1 shared
Köser, Jochen
1 / 1 shared
Wagner, Raphael S.
1 / 1 shared
Kisiel, Marcin
1 / 3 shared
Meyer, Ernst
1 / 8 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kühl, Sebastian
  • Mukaddam, Khaled
  • Fasler-Kan, Elizaveta
  • Astasov-Frauenhoffer, Monika
  • Alhawasli, Farah
  • Ruggiero, Sabrina
  • Köser, Jochen
  • Wagner, Raphael S.
  • Kisiel, Marcin
  • Meyer, Ernst
OrganizationsLocationPeople

article

Piranha-etched titanium nanostructure reduces biofilm formation in vitro

  • Kühl, Sebastian
  • Mukaddam, Khaled
  • Fasler-Kan, Elizaveta
  • Astasov-Frauenhoffer, Monika
  • Alhawasli, Farah
  • Ruggiero, Sabrina
  • Bornstein, Michael M.
  • Köser, Jochen
  • Wagner, Raphael S.
  • Kisiel, Marcin
  • Meyer, Ernst
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Objectives</jats:title><jats:p>Nano-modified surfaces for dental implants may improve gingival fibroblast adhesion and antibacterial characteristics through cell-surface interactions. The present study investigated how a nanocavity titanium surface impacts the viability and adhesion of human gingival fibroblasts (HGF-1) and compared its response to <jats:italic>Porphyromonas gingivalis</jats:italic> with those of marketed implant surfaces.</jats:p></jats:sec><jats:sec><jats:title>Material and methods</jats:title><jats:p>Commercial titanium and zirconia disks, namely, sandblasted and acid-etched titanium (SLA), sandblasted and acid-etched zirconia (ZLA), polished titanium (PT) and polished zirconia (ZrP), and nanostructured disks (NTDs) were tested. Polished titanium disks were etched with a 1:1 combination of 98% H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub> and 30% H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> (piranha etching) for 5 h at room temperature to produce the NTDs. Atomic force microscopy was used to measure the surface topography, roughness, adhesion force, and work of adhesion. MTT assays and immunofluorescence staining were used to examine cell viability and adhesion after incubation of HGF-1 cells on the disk surfaces. After incubation with <jats:italic>P. gingivalis</jats:italic>, conventional culture, live/dead staining, and SEM were used to determine the antibacterial properties of NTD, SLA, ZLA, PT, and ZrP.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Etching created nanocavities with 10–20-nm edge-to-edge diameters. Chemical etching increased the average surface roughness and decreased the surface adherence, while polishing and flattening of ZrP increased adhesion. However, only the NTDs inhibited biofilm formation and bacterial adherence. The NTDs showed antibacterial effects and <jats:italic>P. gingivalis</jats:italic> vitality reductions. The HGF-1 cells demonstrated greater viability on the NTDs compared to the controls.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>Nanocavities with 10–20-nm edge-to-edge diameters on titanium disks hindered <jats:italic>P. gingivalis</jats:italic> adhesion and supported the adhesion of gingival fibroblasts when compared to the surfaces of currently marketed titanium or zirconia dental implants.</jats:p></jats:sec><jats:sec><jats:title>Clinical relevance</jats:title><jats:p>This study prepared an effective antibacterial nanoporous surface, assessed its effects against oral pathogens, and demonstrated that surface characteristics on a nanoscale level influenced oral pathogens and gingival fibroblasts.</jats:p><jats:p><jats:bold>Clinical trial registration</jats:bold>: not applicable</jats:p></jats:sec>

Topics
  • surface
  • scanning electron microscopy
  • atomic force microscopy
  • etching
  • titanium
  • size-exclusion chromatography
  • polishing