Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Soldatovic, Danka Micovic

  • Google
  • 1
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Impact of material combinations and removal and insertion cycles on the retention force of telescopic systems5citations

Places of action

Chart of shared publication
Liebermann, Anja
1 / 2 shared
Bitter, Maximiliane
1 / 1 shared
Stawarczyk, Bogna
1 / 112 shared
Meinen, John
1 / 2 shared
Huth, Karin Christine
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Liebermann, Anja
  • Bitter, Maximiliane
  • Stawarczyk, Bogna
  • Meinen, John
  • Huth, Karin Christine
OrganizationsLocationPeople

article

Impact of material combinations and removal and insertion cycles on the retention force of telescopic systems

  • Soldatovic, Danka Micovic
  • Liebermann, Anja
  • Bitter, Maximiliane
  • Stawarczyk, Bogna
  • Meinen, John
  • Huth, Karin Christine
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Objectives</jats:title><jats:p>A variety of dental materials are available for the fabrication of telescopic crowns. The aim was to investigate the impact of material combinations and removal and insertion cycles on their retention forces.</jats:p></jats:sec><jats:sec><jats:title>Materials and methods</jats:title><jats:p>CAD/CAM-fabricated cobalt–chromium–molybdenum (CoCr) and zirconia (ZrO<jats:sub>2</jats:sub>) primary crowns were combined with polyetheretherketone (PEEK), polyetherketoneketone (PEKK), CoCr, and ZrO<jats:sub>2</jats:sub> secondary crowns (four combinations included PEEK/PEKK secondary crowns in a thickness of 0.5 mm bonded to the CoCr tertiary construction), resulting in 12 different material combinations: CoCr–PEEK; CoCr–PEKK; CoCr–ZrO<jats:sub>2</jats:sub>; CoCr–CoCr; CoCr–PEEK 0.5; CoCr–PEKK 0.5; ZrO<jats:sub>2</jats:sub>–PEEK; ZrO<jats:sub>2</jats:sub>–PEKK; ZrO<jats:sub>2</jats:sub>–ZrO<jats:sub>2</jats:sub>, ZrO<jats:sub>2</jats:sub>–CoCr; ZrO<jats:sub>2</jats:sub>–PEEK 0.5; and ZrO<jats:sub>2</jats:sub>–PEKK 0.5 (<jats:italic>n</jats:italic> = 15 pairings per material combination). Pull-off tests were performed with a universal testing machine initially and after 500, 5000, and 10,000 removal and insertion cycles in a mastication simulator. Descriptive statistics with the Kolmogorov–Smirnov, Kruskal–Wallis, and Mann–Whitney <jats:italic>U</jats:italic> tests were computed (<jats:italic>α</jats:italic> = 0.05).</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The tested parameters, material combination, and removal and insertion cycles had significant impact on the retention force values (<jats:italic>p</jats:italic> &lt; 0.001). An increase in removal and insertion cycles was associated with a decrease in retention forces within CoCr and ZrO<jats:sub>2</jats:sub> secondary crowns, regardless of the primary crown material. In contrast, PEEK and PEKK secondary crowns presented higher retention load values after 10,000 cycles than initially.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>Different material combinations behaved differently after simulated removal and insertion regimens. This difference should be considered during treatment planning.</jats:p></jats:sec><jats:sec><jats:title>Clinical relevance</jats:title><jats:p>Telescopic crown systems should be made of materials with predictable retention forces that do not deteriorate with time. The implementation of new materials and technologies facilitates reproducibility and time-saving fabrication.</jats:p></jats:sec>

Topics
  • molybdenum
  • chromium
  • cobalt
  • size-exclusion chromatography
  • collision-induced dissociation