Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ørstavik, D.

  • Google
  • 1
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Surface characteristics and bacterial adhesion of endodontic cements.4citations

Places of action

Chart of shared publication
Camilleri, Josette
1 / 23 shared
Pt, Sunde
1 / 1 shared
Valen, H.
1 / 1 shared
Kapralos, Vasileios
1 / 1 shared
Koutroulis, Andreas
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Camilleri, Josette
  • Pt, Sunde
  • Valen, H.
  • Kapralos, Vasileios
  • Koutroulis, Andreas
OrganizationsLocationPeople

article

Surface characteristics and bacterial adhesion of endodontic cements.

  • Camilleri, Josette
  • Pt, Sunde
  • Valen, H.
  • Ørstavik, D.
  • Kapralos, Vasileios
  • Koutroulis, Andreas
Abstract

<h4>Objectives</h4>To investigate the effect of inclusion of silver nano-particles (SNP) or bioactive glass (BG) on the surface characteristics and bacterial adhesion of prototype tricalcium silicate (TCS)-based cements alongside two commercial cements, under different aging periods and exposure conditions.<h4>Materials and methods</h4>A basic formulation of radio-opacified TCS without (TZ-base) and with additions of SNP (0.5, 1, or 2 mg/ml) or BG (10 or 20%) was used. Biodentine and intermediate restorative material (IRM) served as reference materials. Material disks were immersed in ultrapure water or fetal bovine serum (FBS) for 1, 7, or 28 days. Surface roughness (n = 3), microhardness (n = 9), and wettability (n = 6) were analyzed by standard procedures. Adhesion of Enterococcus faecalis was assessed by fluorescence microscopy (n = 5). Data from these assays were evaluated for normality and comparisons among groups were conducted with statistical procedures (p < 0.05 for significance).<h4>Results</h4>The surface morphology of SNP- and BG-containing cements had higher roughness values than TZ-base after 28 days (p < 0.05). No differences in microhardness were observed among prototype cements (p > 0.05). Biodentine presented smooth surface characteristics and the highest hardness values (p < 0.05). The FBS-immersion resulted in surface reactions in prototype materials and Biodentine, depicted with scanning electron microscopy. All 1- and 7-day prototype cements showed negligible bacterial adhesion, while in Biodentine and IRM, noticeable E. faecalis adherence was observed from day 1 (p < 0.05).<h4>Conclusions</h4>Incorporation of SNP or BG did not improve the antibacterial effect of the experimental cement; all 28-day aged materials failed to inhibit bacterial adherence. The measured physical parameters did not appear to be related to the degree of bacterial adhesion. Exposure of TCS-based cements in FBS resulted in surface reactions, which did not affect bacterial adhesion.<h4>Clinical relevance</h4>Changes in the surface characteristics of prototype TCS-based cements by inclusion of SNP and BG or exposure to different environments did not affect bacterial adhesion. All experimental materials showed inferior physical properties and higher antibacterial effect than Biodentine.

Topics
  • surface
  • silver
  • inclusion
  • scanning electron microscopy
  • glass
  • glass
  • cement
  • hardness
  • aging
  • aging
  • fluorescence microscopy