Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Soto-Montero, Jorge Rodrigo

  • Google
  • 2
  • 6
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Effect of extended light activation and increment thickness on physical properties of conventional and bulk-filled resin-based composites13citations
  • 2021Flexural strength and microhardness of bulk-fill restorative materials16citations

Places of action

Chart of shared publication
Cavalli, Vanessa
1 / 7 shared
Giannini, Marcelo
2 / 10 shared
Kury, Matheus
1 / 1 shared
Castro, Eduardo Fernandes De
2 / 3 shared
Mendonça, Beatriz Curvello De
2 / 2 shared
Pecorari, Vanessa Gallego Arias
1 / 2 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Cavalli, Vanessa
  • Giannini, Marcelo
  • Kury, Matheus
  • Castro, Eduardo Fernandes De
  • Mendonça, Beatriz Curvello De
  • Pecorari, Vanessa Gallego Arias
OrganizationsLocationPeople

article

Effect of extended light activation and increment thickness on physical properties of conventional and bulk-filled resin-based composites

  • Cavalli, Vanessa
  • Giannini, Marcelo
  • Kury, Matheus
  • Castro, Eduardo Fernandes De
  • Soto-Montero, Jorge Rodrigo
  • Mendonça, Beatriz Curvello De
Abstract

<p>Objectives: To evaluate the biaxial flexural strength (BFS), flexural modulus (BFM), and Knoop microhardness (KHN) of incremental and bulk-filled resin-based composites (RBCs) using extended curing exposure times. Materials and methods: Disc specimens (n = 8; 6-mm diameter) were fabricated using three stacked molds (0.5-mm thick for the top and bottom molds, and a 1-mm-thick center mold for the conventional and 3-mm thick for the bulk-fill RBCs). Conventional (Tetric EvoCeram/TCE and Filtek Z250/FIZ) and bulk-fill RBCs (Tetric EvoCeram Bulk Fill/TBF and Filtek One Bulk Fill Restorative/FOB) were evaluated. The stacked RBC-filled molds were light-cured for (1) the manufacturer-recommended exposure (MRE) duration; (2) 50%, and (3) 100% extension of the MRE. The BFS, BFM, and KHN of the top and bottom discs were measured. BFS and BFM were analyzed by three-way ANOVA (material*curing time*depth) and Tukey’s post hoc (α = 0.05). KHN was analyzed by two-way ANOVA (curing time*depth) and Tukey’s post hoc (α = 0.05). Results: Extending the exposure duration did not change the BFS and BFM on the top of the RBCs, but the BFS and KHN increased at the bottom of bulk-fill RBCs. For the conventional RBCs, TCE showed the highest increase on BFS at the bottom, going from 53.6 MPa at T1 to 69.9 at T3. Among the bulk-fill RBCs, FOB presented the highest increase on the bottom BFS (T1: 101.0 ± 19.9 MPa, T3: 147.6 ± 12.9 MPa). For all RBCs and exposure times, BFS and KHN were lower at the bottom. Only FIZ and FOB reached a bottom-to-top hardness ratio of 80%, at T3 and T2. Conclusion: A significant increase on the BFS and KHN on the bottom of bulk-fill RBCs can be observed when the time of exposure to the curing light is double the MRE. However, extended exposure does not eliminate differences on the BFS and KHN between the shallow and deep regions of RBCs. TCE and TBF failed to reach an acceptable B/T hardness ratio at all evaluated exposure times. Clinical relevance: Mechanical properties of RBCs can be affected by insufficient polymerization, specially at deeper regions of the increment. Therefore, clinicians should consider applying twice the MRE to curing-light to polymerize the maximal increment thickness of bulk-fill RBCs.</p>

Topics
  • impedance spectroscopy
  • strength
  • composite
  • flexural strength
  • hardness
  • activation
  • resin
  • curing