Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tb, Da Maceno Oliveira

  • Google
  • 1
  • 6
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Is it possible for a simultaneous biomodification during acid etching on naturally caries-affected dentin bonding?15citations

Places of action

Chart of shared publication
Fsf, De Siqueira
1 / 1 shared
Afm, Cardenas
1 / 1 shared
Hass, Viviane
1 / 5 shared
Jj, De Souza
1 / 1 shared
Mac, Sinhoreti
1 / 1 shared
Loguercio, Alessandro
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Fsf, De Siqueira
  • Afm, Cardenas
  • Hass, Viviane
  • Jj, De Souza
  • Mac, Sinhoreti
  • Loguercio, Alessandro
OrganizationsLocationPeople

article

Is it possible for a simultaneous biomodification during acid etching on naturally caries-affected dentin bonding?

  • Fsf, De Siqueira
  • Tb, Da Maceno Oliveira
  • Afm, Cardenas
  • Hass, Viviane
  • Jj, De Souza
  • Mac, Sinhoreti
  • Loguercio, Alessandro
Abstract

<h4>Objectives</h4>This study investigated the ability of modified phosphoric acids containing chlorhexidine (CHX) or grape seed extract (GSE) for promoting simultaneous biomodification during acid etching on bonding properties in caries-affected dentin (CAD).<h4>Materials and methods</h4>Thirty-two human molars (8 with sound dentin [SD] and 24 naturally CAD) were selected for the study. The SD and CAD were initially exposed, then randomized and etched according to the following groups: (1) SD (SD-CT) and CAD (CAD-CT) both with 37% phosphoric acid, (2) CAD with 2% CHX containing 37% phosphoric acid (CAD-CHX), and (3) CAD with 2% GSE containing 10% phosphoric acid (CAD-GSE). The bonding procedure and composite build-ups were performed after acid etching. Subsequently, they were sectioned in resin-dentin specimens. The specimens were submitted for chemical profiling by micro-Raman, microtensile bond strength (μTBS), failure mode with chemical characterization by FEG/SEM-EDX, and in situ zymography by CLSM. The data from μTBS and CLSM were statistically analyzed (1-way ANOVA and Tukey's test; α = 0.05).<h4>Results</h4>The highest μTBS results were shown for SD-CT in comparison with all CAD groups (p < 0.001), and the lowest for CAD-CT and CAD-CHX (p < 0.001). The etching with CHX did not increase the μTBS for CAD when compared with CT (p = 0.52). However, the etching with GSE improved significantly the μTBS for CAD when compared with CT and CHX (p < 0.001). The chemical profile detected chemical and structural changes in collagen peaks for CAD-CT, which were not detected when the CAD was etched by modified acids. Also, the poorest hybridization ability was detected in CAD for CT, which was significantly improved with modified acids, especially the GSE, as evaluated by chemical profile and failure mode. A significant reduction of MMP activity on CAD was promoted by modified acids in comparison with CT (both p < 0.001).<h4>Conclusions</h4>The GSE-containing acid was able to promote biomodification during the acid etching, increasing the bonding properties and reducing the activity of the MMPs within the hybrid layer.<h4>Clinical relevance</h4>The use of GSE-containing phosphoric acid can be a promising alternative to improve the bonding performance on caries-affected dentin, since it is capable of biomodifying the dentin during the acid etching, without adding any extra step in bonding procedures.

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • strength
  • composite
  • etching
  • Energy-dispersive X-ray spectroscopy
  • resin
  • ultraviolet photoelectron spectroscopy
  • collision-induced dissociation
  • confocal laser scanning microscopy