Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zanetta-Barbosa, Darceny

  • Google
  • 1
  • 6
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Effect of ionizing radiation after-therapy interval on bone:23citations

Places of action

Chart of shared publication
Spin-Neto, Rubens
1 / 4 shared
Soares, Priscilla Barbosa Ferreira
1 / 1 shared
Soares, Carlos José
1 / 5 shared
Limirio, Pedro Henrique Justino Oliveira
1 / 1 shared
Jesus, Rainde Naiara Rezende De
1 / 1 shared
Dechichi, Paula
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Spin-Neto, Rubens
  • Soares, Priscilla Barbosa Ferreira
  • Soares, Carlos José
  • Limirio, Pedro Henrique Justino Oliveira
  • Jesus, Rainde Naiara Rezende De
  • Dechichi, Paula
OrganizationsLocationPeople

article

Effect of ionizing radiation after-therapy interval on bone:

  • Spin-Neto, Rubens
  • Soares, Priscilla Barbosa Ferreira
  • Soares, Carlos José
  • Limirio, Pedro Henrique Justino Oliveira
  • Jesus, Rainde Naiara Rezende De
  • Dechichi, Paula
  • Zanetta-Barbosa, Darceny
Abstract

<p>OBJECTIVES: This study aimed to evaluate the effects of radiotherapy on biomechanical, histomorphometric, and microstructural characteristics of bone, in diverse periods, compared with intact bone tissue.</p><p>MATERIALS AND METHODS: Eighteen adult male New Zealand rabbits were treated with a single radiation dose of 30 Gy. The animals were randomly divided into six groups: NoIr, control group, no radiation, and five irradiated groups sacrificed after 24 h (Ir24h), 7 (Ir7d), 14 (Ir14d), 21 (Ir21d), and 28 (Ir28d) days. After these periods, the animals were sacrificed and their tibias (n = 6) evaluated using three-point bending test to calculate the ultimate force, work to failure, and bone stiffness. Dynamic indentation test was used to quantify Vickers hardness and elasticity modulus of bone tissue. Micro-CT was used to analyze the cortical volume (CtV), cortical thickness (CtTh), and porosity (Ct.Po). Histomorphometric assessment was based on the lacunarity of bone tissue. Data were analyzed using one-way ANOVA and Kruskal-Wallis tests followed by Tukey, Dunnet, and Dunn's post-tests (P &lt; 0.05).</p><p>RESULTS: The ultimate force, work to failure, stiffness, elastic modulus, and Vickers hardness values of irradiated bone were significantly lower that non-irradiated bone. Irradiated bone showed significantly lower CtTh and CtV values and higher CtPo than non-irradiated bone. No significant difference was found for lacunarity between non-irradiated bone and irradiated bone.</p><p>CONCLUSIONS: Ionizing radiation decreases normal anisotropy on microarchitecture of cortical bone, and increases bone fragility compared with non-irradiated bone. Further, these changes were seen after longer periods (e.g., 14 and 21 days), and not immediately after radiation therapy.</p><p>CLINICAL RELEVANCE: The radiotherapy reduces bone mechanical properties and the normal structure of organic and inorganic bone matrix. For studying the protocols to protect the radiotherapy effect using rabbit model, the use of the sacrificing period between 14 and 21 days is recommended.</p>

Topics
  • impedance spectroscopy
  • hardness
  • bending flexural test
  • elasticity
  • porosity