Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fender, T. D.

  • Google
  • 1
  • 5
  • 65

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Geomechanical characterisation of organic-rich calcareous shale using AFM and nanoindentation65citations

Places of action

Chart of shared publication
Graham, Samuel
1 / 6 shared
Armitage, Peter
1 / 1 shared
Cubillas, Pablo
1 / 8 shared
Aplin, Andrew
1 / 3 shared
Rouainia, M.
1 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Graham, Samuel
  • Armitage, Peter
  • Cubillas, Pablo
  • Aplin, Andrew
  • Rouainia, M.
OrganizationsLocationPeople

article

Geomechanical characterisation of organic-rich calcareous shale using AFM and nanoindentation

  • Graham, Samuel
  • Armitage, Peter
  • Fender, T. D.
  • Cubillas, Pablo
  • Aplin, Andrew
  • Rouainia, M.
Abstract

<jats:title>Abstract</jats:title><jats:p>The geomechanical integrity of shale overburden is a highly significant geological risk factor for a range of engineering and energy-related applications including CO<jats:inline-formula><jats:alternatives><jats:tex-math>_2</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math></jats:alternatives></jats:inline-formula> storage and unconventional hydrocarbon production. This paper aims to provide a comprehensive set of high-quality nano- and micro-mechanical data on shale samples to better constrain the macroscopic mechanical properties that result from the microstructural constituents of shale. We present the first study of the mechanical responses of a calcareous shale over length scales of 10 nm to 100 <jats:inline-formula><jats:alternatives><jats:tex-math></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>μ</mml:mi></mml:math></jats:alternatives></jats:inline-formula>m, combining approaches involving atomic force microscopy (AFM), and both low-load and high-load nanoindentation. PeakForce quantitative nanomechanical mapping AFM (PF-QNM) and quantitative imaging (QI-AFM) give similar results for Young’s modulus up to 25 GPa, with both techniques generating values for organic matter of 5–10 GPa. Of the two AFM techniques, only PF-QNM generates robust results at higher moduli, giving similar results to low-load nanoindentation up to 60 GPa. Measured moduli for clay, calcite, and quartz-feldspar are <jats:inline-formula><jats:alternatives><jats:tex-math>222\, { GPa}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>22</mml:mn><mml:mo>±</mml:mo><mml:mn>2</mml:mn><mml:mspace /><mml:mspace /><mml:mtext>GPa</mml:mtext></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>, <jats:inline-formula><jats:alternatives><jats:tex-math>428\, { GPa}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>42</mml:mn><mml:mo>±</mml:mo><mml:mn>8</mml:mn><mml:mspace /><mml:mspace /><mml:mtext>GPa</mml:mtext></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>, and <jats:inline-formula><jats:alternatives><jats:tex-math>5510\, { GPa}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>55</mml:mn><mml:mo>±</mml:mo><mml:mn>10</mml:mn><mml:mspace /><mml:mspace /><mml:mtext>GPa</mml:mtext></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> respectively. For calcite and quartz-feldspar, these values are significantly lower than measurements made on highly crystalline phases. High-load nanoindentation generates an unimodal mechanical response in the range of 40–50 GPa for both samples studied here, consistent with calcite being the dominant mineral phase. Voigt and Reuss bounds calculated from low-load nanoindentation results for individual phases generate the expected composite value measured by high-load nanoindentation at length scales of 100–600 <jats:inline-formula><jats:alternatives><jats:tex-math></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>μ</mml:mi></mml:math></jats:alternatives></jats:inline-formula>m. In contrast, moduli measured on more highly crystalline mineral phases using data from literature do not match the composite value. More emphasis should, therefore, be placed on the use of nano- and micro-scale data as the inputs to effective medium models and homogenisation schemes to predict the bulk shale mechanical response.</jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • atomic force microscopy
  • crystalline phase
  • composite
  • nanoindentation