People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bernhard, Michael Christian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024In situ study and assessment of the phosphorus-induced solute drag effect on the grain boundary mobility of austenitecitations
- 2024Experimental investigation and computational thermodynamics of the quaternary system Fe-C-Mn-S
- 2024On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steelcitations
- 2024The simple microsegregation model for steel considering MnS formation in the liquid and solid phasescitations
- 2024Critical Examination of the Representativeness of Austenite Grain Growth Studies Performed In Situ Using HT-LSCM and Application to Determine Growth-inhibiting Mechanismscitations
- 2023Grain boundary mobility of γ-Fe in high-purity iron during isothermal annealingcitations
- 2023Hot tear prediction in large sized high alloyed turbine steel parts - experimental based calibration of mechanical data and model validation
- 2023Thermodynamic modeling of the Fe-Sn system including an experimental re-assessment of the liquid miscibility gapcitations
- 2023Decomposition of γ-Fe in 0.4C-1.8Si-2.8Mn-0.5Al steel during a continuous cooling process: A comparative study using in-situ HT-LSCM, DSC and dilatometrycitations
- 2023Impurities and tramp elements in steel: Thermodynamic aspects and the application to solidification processes
- 2023Einfluss der Düsenparameter auf die Kühlbedingungen in der Sekundärkühlzone einer Brammengießanlagecitations
- 2022A Near-Process 2D Heat-Transfer Model for Continuous Slab Casting of Steelcitations
- 2022Selected metallurgical models for computationally efficient prediction of quality-related issues in continuous slab casting of steel
- 2022Experimental thermodynamics for improving CALPHAD optimizations at the Chair of Ferrous Metallurgy
- 2021Characterization of the gamma-loop in the Fe-P system by coupling DSC and HT-LSCM with complementary in-situ experimental techniquescitations
- 2021Investigations on hot tearing in a continuous slab caster: Numerical modelling combined with analysis of plant results
- 2020Experimental Study of High Temperature Phase Equilibria in the Iron-Rich Part of the Fe-P and Fe-C-P Systemscitations
- 2019High precious phase diagrams – a roadmap for a successful casting processing
Places of action
Organizations | Location | People |
---|
article
Einfluss der Düsenparameter auf die Kühlbedingungen in der Sekundärkühlzone einer Brammengießanlage
Abstract
The following contribution focuses on the secondary cooling zone of a slab caster, analyzing the effects<br/>of nozzle parameters on cooling conditions. The research<br/>group employs experimental measurements, including the<br/>Nozzle Measuring Stand (NMS), to determine local heat<br/>transfer coefficients (HTC) and water distribution. These<br/>measurements are crucial for accurately setting the boundary conditions in the simulation. The implementation of<br/>these boundary conditions is realized by an Exponential<br/>Gaussian Process Regression (EGPR) to predict HTC values. The results highlight the importance of an accurate<br/>HTC assessment in regions with overlapping sprays. The<br/>developed methodology aids in enhancing the precision of<br/>simulations for continuous casting processes, contributing<br/>to a better product quality and process efficiency using the<br/>non-commercial software platform “m2CAST”.