Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Taferner, Matthias

  • Google
  • 4
  • 11
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Einfluss der Düsenparameter auf die Kühlbedingungen in der Sekundärkühlzone einer Brammengießanlage1citations
  • 2022A Near-Process 2D Heat-Transfer Model for Continuous Slab Casting of Steel7citations
  • 2020Utilization of Experimental Data as Boundary Conditions for the Solidification Model Tempsimu-3D5citations
  • 2018Energy efficiency in secondary cooling - New generation of air-mist nozzles with reduced air consumption and high cooling efficiencycitations

Places of action

Chart of shared publication
Laschinger, Julian
2 / 2 shared
Bernhard, Christian
4 / 53 shared
Bernhard, Michael Christian
2 / 18 shared
Ilie, Viorel-Sergiu
1 / 1 shared
Ilie, Sergiu
2 / 18 shared
Preuler, Lukas
2 / 4 shared
Santos, Gabriel
1 / 2 shared
Wieser, Gerhard
1 / 1 shared
Louhenkilpi, Seppo
1 / 7 shared
Frick, Jürgen
1 / 1 shared
Wolff, Robert
1 / 1 shared
Chart of publication period
2023
2022
2020
2018

Co-Authors (by relevance)

  • Laschinger, Julian
  • Bernhard, Christian
  • Bernhard, Michael Christian
  • Ilie, Viorel-Sergiu
  • Ilie, Sergiu
  • Preuler, Lukas
  • Santos, Gabriel
  • Wieser, Gerhard
  • Louhenkilpi, Seppo
  • Frick, Jürgen
  • Wolff, Robert
OrganizationsLocationPeople

article

Utilization of Experimental Data as Boundary Conditions for the Solidification Model Tempsimu-3D

  • Ilie, Sergiu
  • Preuler, Lukas
  • Louhenkilpi, Seppo
  • Bernhard, Christian
  • Taferner, Matthias
Abstract

Solidification models are an important tool for the<br/>prediction of temperatures and shell growth during the process<br/>of continuous casting of steel. To gain reliable simulation<br/>results, it is crucial to use highly sophisticated material<br/>data and boundary conditions depending on different process<br/>parameters. The focus of this work lies on the utilization<br/>of experimental data to describe the secondary cooling<br/>zone (SCZ) of a slab caster in the solidification model Tempsimu-<br/>3D. In this part of the caster, water and air-mist sprays<br/>are used to cool down the strand. To calculate the heat<br/>transfer coefficient caused by spray cooling (HTCspray), the<br/>model uses a correlation between thewater impact density<br/>(WID) and the surface temperature of the slab. Together<br/>with the heat removal due to roll contact and radiation, this<br/>HTCspray is applied as a boundary condition for the SCZ.<br/>To adjust the parameters of the correlation formula, results<br/>fromWID and HTCmeasurements are used. For validation,<br/>the simulation results are compared with a measurement<br/>of the slab surface temperature.

Topics
  • density
  • impedance spectroscopy
  • surface
  • simulation
  • steel
  • solidification
  • continuous casting