Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sailer, Julia

  • Google
  • 1
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Insights into trunks of Pinus cembra L.: analyses of hydraulics via electrical resistivity tomography6citations

Places of action

Chart of shared publication
Mayr, Stefan
1 / 2 shared
Bär, Andreas
1 / 1 shared
Ganthaler, Andrea
1 / 1 shared
Losso, Adriano
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Mayr, Stefan
  • Bär, Andreas
  • Ganthaler, Andrea
  • Losso, Adriano
OrganizationsLocationPeople

article

Insights into trunks of Pinus cembra L.: analyses of hydraulics via electrical resistivity tomography

  • Mayr, Stefan
  • Sailer, Julia
  • Bär, Andreas
  • Ganthaler, Andrea
  • Losso, Adriano
Abstract

<jats:title>Abstract</jats:title><jats:sec> <jats:title>Key message</jats:title> <jats:p>The lack of elevational changes in electrical resistivity in <jats:italic>Pinus cembra</jats:italic> trunks indicated consistent growth and hydraulics across elevations. Though, electrical resistivity tomograms exhibited pronounced temperature-driven seasonal changes.</jats:p> </jats:sec><jats:sec> <jats:title>Abstract</jats:title> <jats:p>Alpine conifers growing at high elevation are exposed to low temperatures, which may limit xylogenesis and cause pronounced seasonal changes in tree hydraulics. Electrical resistivity (ER) tomography enables minimal invasive monitoring of stems in situ. We used this technique to analyze <jats:italic>Pinus cembra</jats:italic> trunks along a 400 m elevational gradient up to the timberline and over seasons. Furthermore, ER data of earlywood across tree rings were compared with the respective specific hydraulic conductivity (<jats:italic>K</jats:italic><jats:sub>S</jats:sub>), measured on extracted wood cores. ER tomograms revealed pronounced changes over the year and a strong correlation between average ER (ER<jats:sub>mean</jats:sub>) and air and xylem temperatures. Surprisingly, no elevational changes in ER<jats:sub>mean</jats:sub>, earlywood ER or <jats:italic>K</jats:italic><jats:sub>S</jats:sub> were observed. ER data corresponded to variation in earlywood <jats:italic>K</jats:italic><jats:sub>S</jats:sub>, which decreased from the youngest (ca. 4–5 cm<jats:sup>2</jats:sup>s<jats:sup>−1</jats:sup> MPa<jats:sup>−1</jats:sup>) to the oldest tree rings (0.63 ± 0.22 cm<jats:sup>2</jats:sup>s<jats:sup>−1</jats:sup> MPa<jats:sup>−1</jats:sup>). The lack of changes in ER data and earlywood <jats:italic>K</jats:italic><jats:sub>S</jats:sub> along the study transect indicated consistent growth patterns and no major changes in structural and functional hydraulic traits across elevation. The constant decrease in earlywood <jats:italic>K</jats:italic><jats:sub>S</jats:sub> with tree ring age throughout all elevations highlights the hydraulic relevance of the outermost tree rings in <jats:italic>P. cembra</jats:italic>. Seasonal measurements demonstrated pronounced temperature effects on ER, and we thus recommend a detailed monitoring of trunk temperatures for ER tomography.</jats:p> </jats:sec>

Topics
  • resistivity
  • tomography
  • wood
  • size-exclusion chromatography