Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alloway, B. V.

  • Google
  • 1
  • 13
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Silicic conduits as supersized tuffisites28citations

Places of action

Chart of shared publication
Kennedy, B. M.
1 / 3 shared
Tuffen, Hugh
1 / 7 shared
Schipper, C. I.
1 / 1 shared
Forte, P.
1 / 2 shared
Wadsworth, F. B.
1 / 2 shared
Schaefer, L. N.
1 / 1 shared
Castro, J. M.
1 / 2 shared
Fitzgerald, R. H.
1 / 1 shared
Rhodes, E.
1 / 1 shared
Paisley, R.
1 / 1 shared
Whattam, J.
1 / 1 shared
Seropian, G.
1 / 1 shared
Ashwell, P. A.
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Kennedy, B. M.
  • Tuffen, Hugh
  • Schipper, C. I.
  • Forte, P.
  • Wadsworth, F. B.
  • Schaefer, L. N.
  • Castro, J. M.
  • Fitzgerald, R. H.
  • Rhodes, E.
  • Paisley, R.
  • Whattam, J.
  • Seropian, G.
  • Ashwell, P. A.
OrganizationsLocationPeople

article

Silicic conduits as supersized tuffisites

  • Kennedy, B. M.
  • Tuffen, Hugh
  • Schipper, C. I.
  • Forte, P.
  • Wadsworth, F. B.
  • Schaefer, L. N.
  • Castro, J. M.
  • Fitzgerald, R. H.
  • Rhodes, E.
  • Paisley, R.
  • Whattam, J.
  • Alloway, B. V.
  • Seropian, G.
  • Ashwell, P. A.
Abstract

Understanding the processes that drive explosive-effusive transitions during large silicic eruptions is crucial to hazard mitigation. Conduit models usually treat magma ascent and degassing as a gradual, unidirectional progression from bubble nucleation through magmatic fragmentation. However, there is growing evidence for the importance of bi-directional clastogenic processes that sinter fragmented materials into coherent clastogenic magmas. Bombs that were ejected immediately before the first emergence of lava in the 2011–2012 eruption at Cordón Caulle volcano (Chile) are texturally heterogeneous composite assemblages of welded pyroclastic material. Although diverse in density and appearance, SEM and X-ray tomographic analysis show them all to have been formed by multi-generational viscous sintering of fine ash. Sintering created discrete clasts ranging from obsidian to pumice and formed a pervasive clast-supporting matrix that assembled these clasts into a conduit-sealing plug. An evaluation of sintering timescales reveals texturally disparate bomb components to represent only minutes of difference in residence time within the conduit. Permeability modelling indicates that the plug was an effective conduit seal, with outgassing potential—even from high-porosity regions—being limited by the inability of gas to flow across tendrils of densely sintered inter-clast matrix. Contrary to traditional perspectives, declining expressions of explosivity at the surface need not be preceded or accompanied by a decline in fragmentation efficiency. Instead, they result from tips in balance between the opposing processes of fragmentation and sintering that occur in countless cycles within volcanic conduits. These processes may be particularly enhanced at silicic fissure volcanoes, which have laterally extensive subsurface plumbing systems that require complex magma ascent pathways. The textures investigated here reveal the processes occurring within silicic fissures to be phenomenologically identical to those that have been inferred to occur in tuffisite veins: silicic conduits are essentially supersized examples of edifice-penetrating tuffisites. 

Topics
  • density
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • composite
  • texture
  • permeability
  • porosity
  • degassing
  • sintering