Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Blundy, Jd

  • Google
  • 1
  • 2
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Multiphase petrography of volcanic rocks using element maps: a method applied to Mount St. Helens, 1980–200522citations

Places of action

Chart of shared publication
Muir, Dd
1 / 1 shared
Rust, Alison C.
1 / 5 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Muir, Dd
  • Rust, Alison C.
OrganizationsLocationPeople

article

Multiphase petrography of volcanic rocks using element maps: a method applied to Mount St. Helens, 1980–2005

  • Muir, Dd
  • Blundy, Jd
  • Rust, Alison C.
Abstract

Quantitative textural analyses including crystal size distributions (CSDs) provide insights into crystallisation kinetics of magmatic systems. Investigations of volcanic crystal textures often rely on greyscale variations on backscattered electron images to identify crystal phases, which must then be thresholded and/or traced manually, a laborious task, and investigations are typically restricted to a single crystal phase. A method is presented that uses energy-dispersive X-ray element maps to generate textural data. Each pixel is identified as a crystal phase, glass or vesicle according to relative chemical composition enabling concurrent acquisition of multiphase CSD, crystallinity and mineral mode data. Data processing is less time intensive for the operator but considerable instrument time is required to generate element maps. The method is applied to 17 dacite samples from the 1980–1986 and 3 from the 2004–2005 eruptive periods of Mount St. Helens volcano (USA) to provide quantitative insights into multiphase textural evolution. All of the CSDs are curved and concave-up in the standard CSD plot with curvature increasing with plagioclase content. To facilitate comparisons with previous studies, CSDs for microlites (

Topics
  • impedance spectroscopy
  • mineral
  • single crystal
  • phase
  • glass
  • glass
  • laser emission spectroscopy
  • chemical composition
  • texture
  • crystallinity