Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gitman, M. B.

  • Google
  • 1
  • 2
  • 69

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006Quantification of stochastically stable representative volumes for random heterogeneous materials69citations

Places of action

Chart of shared publication
Gitman, Inna
1 / 4 shared
Askes, Harm
1 / 3 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Gitman, Inna
  • Askes, Harm
OrganizationsLocationPeople

article

Quantification of stochastically stable representative volumes for random heterogeneous materials

  • Gitman, Inna
  • Gitman, M. B.
  • Askes, Harm
Abstract

<p>This paper details a procedure to determine lower bounds on the size of representative volume elements (RVEs) by which the size of the RVE can be quantified objectively for random heterogeneous materials. Here, attention is focused on granular materials with various distributions of inclusion size and volume fraction of inclusions. An extensive analysis of the RVE size dependence on the various parameters is performed. Both deterministic and stochastic parameters are analysed. Also, the effects of loading mode and the parameter of interest are studied. As the RVE size is a function of the material, some material properties such as Young's modulus and Poisson's ratio are analysed as factors that influence the RVE size. The lower bound of RVE size is found as a function of the stochastically distributed volume fraction of inclusions; thus the stochastic stability of the obtained results is assessed. To this end a newly defined concept of stochastic stability (DH-stability) is introduced by which stochastic effects can be included in the stability considerations. DH-stability can be seen as an extension of classical Lyapunov stability. As is shown, DH-stability provides an objective tool to establish the lower bound nature of RVEs for fluctuations in stochastic parameters.</p>

Topics
  • impedance spectroscopy
  • inclusion
  • random
  • Poisson's ratio