Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Maia, João M.

  • Google
  • 3
  • 7
  • 56

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2006Uniaxial extensional flow behavior of immiscible and compatibilized polypropylene/liquid crystalline polymer blends6citations
  • 2005Influence of type of compatibilizer on the rheological and mechanical behavior of LCP/TP blends under different stationary and nonstationary shear conditions9citations
  • 2004Evolution of morphological and rheological properties along the extruder length for blends of a commercial liquid crystalline polymer and polypropylene41citations

Places of action

Chart of shared publication
Cidade, Maria Teresa
3 / 21 shared
Filipe, Susana
1 / 3 shared
Filipe, Susana A.
1 / 2 shared
Duarte, Ana Paula
1 / 1 shared
Catarina, R. Leal
1 / 2 shared
Filipe, S.
1 / 1 shared
Wilhelm, M.
1 / 11 shared
Chart of publication period
2006
2005
2004

Co-Authors (by relevance)

  • Cidade, Maria Teresa
  • Filipe, Susana
  • Filipe, Susana A.
  • Duarte, Ana Paula
  • Catarina, R. Leal
  • Filipe, S.
  • Wilhelm, M.
OrganizationsLocationPeople

article

Uniaxial extensional flow behavior of immiscible and compatibilized polypropylene/liquid crystalline polymer blends

  • Cidade, Maria Teresa
  • Filipe, Susana
  • Maia, João M.
Abstract

<p>In this work liquid crystalline polymer (LCP) and thermoplastic (TP) blends with and without compatibilizer were studied with respect to their elongational flow behavior, under uniaxial extensional flow. This knowledge is important because in processes involving dominantly extensional deformations, like the case of the formation of the LCP fibrillation, transient extensional flow properties become more important than transient or steady-shear properties. In systems characterized by disperse phase morphologies (10 and 20 wt%) the LCP acts as a plasticizer, decreasing the viscosity of the system and increasing its durability with respect to that of the matrix. On the other hand, for a system in which a co-continuous morphology is present (40 wt% LCP) fibrils and droplets deformation occurs simultaneously, leading to a much higher strain hardening and durability. Moreover, the addition of compatibilizers to the blends gives rise to an increase of the strain hardening and to a decrease of the durability, which is in accordance with the mechanical properties, namely a higher Young's modulus and lower elongation at break, in comparison with noncompatibilized systems.</p>

Topics
  • impedance spectroscopy
  • morphology
  • phase
  • viscosity
  • durability
  • thermoplastic
  • polymer blend