Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

De Visscher, Joelle

  • Google
  • 1
  • 3
  • 52

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006Influence of thermal history on rheological properties of various bitumen52citations

Places of action

Chart of shared publication
Soenen, Hilde
1 / 14 shared
Redelius, Per
1 / 1 shared
Vanelstraete, Ann
1 / 1 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Soenen, Hilde
  • Redelius, Per
  • Vanelstraete, Ann
OrganizationsLocationPeople

article

Influence of thermal history on rheological properties of various bitumen

  • Soenen, Hilde
  • Redelius, Per
  • De Visscher, Joelle
  • Vanelstraete, Ann
Abstract

This paper focuses on the influence of thermal history on the rheological properties of unmodified and polymer modified bitumen (PMB), measured at elevated service temperatures, and contributes to the development of test methods for measuring binder properties, which can be used as indicators for asphalt rutting. It was found that the storing and preparation conditions prior to the rheological measurement can have a large influence, especially in the range of long loading times or low frequencies. For elastomer modification, the homogenization and sample pouring temperature and the corresponding change in microstructure, as revealed by fluorescence microscopy, have a large impact on the rheological measurements. For binders with semi-crystalline modifiers, the storage conditions between sample preparation and testing have the largest impact on the rheological behaviour. This can be related to variations in crystallinity, as shown by calorimetry. The main conclusion from this study is that sample preparation and handling is extremely important for the rheological properties of PMBs. Reproducibility can only be achieved when these conditions are controlled more accurately, especially in binder specification tests for rutting susceptibility.

Topics
  • impedance spectroscopy
  • susceptibility
  • homogenization
  • crystallinity
  • elastomer
  • calorimetry
  • fluorescence microscopy