Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

El-Hameed, Anwer S. Abd

  • Google
  • 2
  • 6
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Exploring the promising frontiers of barium hexaferrite and barium titanate composites for electromagnetic shielding applications7citations
  • 2023Synthesis, characterization, and electromagnetic properties of polypyrrole–barium hexaferrite composites for EMI shielding applications16citations

Places of action

Chart of shared publication
Zhou, Di
2 / 6 shared
Salem, Mohamed
2 / 2 shared
Hemeda, O. M.
2 / 3 shared
Darwish, Moustafa Adel
2 / 6 shared
Ati, M. I. Abdel
2 / 2 shared
Darwish, K. A.
2 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Zhou, Di
  • Salem, Mohamed
  • Hemeda, O. M.
  • Darwish, Moustafa Adel
  • Ati, M. I. Abdel
  • Darwish, K. A.
OrganizationsLocationPeople

article

Exploring the promising frontiers of barium hexaferrite and barium titanate composites for electromagnetic shielding applications

  • Zhou, Di
  • El-Hameed, Anwer S. Abd
  • Salem, Mohamed
  • Hemeda, O. M.
  • Darwish, Moustafa Adel
  • Ati, M. I. Abdel
  • Darwish, K. A.
Abstract

<jats:title>Abstract</jats:title><jats:p>This study provides a comprehensive synthesis and meticulous examination of barium hexaferrite (BHF), barium titanate (BT), and their respective nanocomposites, unveiling their potential in specific applications, including electromagnetic interference shielding. The successful formation of BHF and BT was confirmed through Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analyses, revealing distinct absorption peaks indicative of the tetragonal configuration of BT and the BHF’s crystal structure. Scanning electron microscopy (SEM) depicted the unique morphologies and dispersions of particles in the synthesized nanocomposites, with BHF appearing larger (~ 82 nm) than BT (~ 50 nm). Vibrating sample magnetometry (VSM) findings exhibited an increased resistance to demagnetization with the addition of BT, despite a slight decline at 75% BT concentration due to the non-magnetic nature of BT dominating. Uniquely, the study presented an in-depth analysis of the composites’ conductivity, detailing their non-monotonic behavior across a frequency range. A detailed investigation into the complex permittivity and permeability revealed the composite’s enhanced ability to store and dissipate both electrical and magnetic energy, a function influenced by the concentrations of BT and BHF. A pivotal highlight of this research was the significant achievement of a reflection loss (RL) value of − 45 dB at 9.3 GHz for the composite with 75% BHF, suggesting the composite’s potential as an effective microwave absorber. This study represents a significant step toward designing and optimizing nanocomposites for specific applications in the realm of electromagnetic materials.</jats:p>

Topics
  • nanocomposite
  • dispersion
  • scanning electron microscopy
  • x-ray diffraction
  • permeability
  • spectroscopy
  • Barium