Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Salahdin, Omar Dheyauldeen

  • Google
  • 1
  • 9
  • 106

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Graphene and carbon structures and nanomaterials for energy storage106citations

Places of action

Chart of shared publication
Parra, Rosario Mireya Romero
1 / 4 shared
Jalil, Abduladheem Turki
1 / 3 shared
Al-Thamir, Mohaimen
1 / 1 shared
Kianfar, Ehsan
1 / 6 shared
Solanki, Reena
1 / 1 shared
Izzat, Samar Emad
1 / 2 shared
Hammid, Ali Thaeer
1 / 2 shared
Sayadi, Hamidreza
1 / 2 shared
Arenas, Luis Andres Barboza
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Parra, Rosario Mireya Romero
  • Jalil, Abduladheem Turki
  • Al-Thamir, Mohaimen
  • Kianfar, Ehsan
  • Solanki, Reena
  • Izzat, Samar Emad
  • Hammid, Ali Thaeer
  • Sayadi, Hamidreza
  • Arenas, Luis Andres Barboza
OrganizationsLocationPeople

article

Graphene and carbon structures and nanomaterials for energy storage

  • Parra, Rosario Mireya Romero
  • Jalil, Abduladheem Turki
  • Al-Thamir, Mohaimen
  • Kianfar, Ehsan
  • Solanki, Reena
  • Izzat, Samar Emad
  • Salahdin, Omar Dheyauldeen
  • Hammid, Ali Thaeer
  • Sayadi, Hamidreza
  • Arenas, Luis Andres Barboza
Abstract

There is enormous interest in the use of graphene-based materials for energy storage. This article discusses the progress that has been accomplished in the development of chemical, electrochemical, and electrical energy storage systems using graphene. We summarize the theoretical and experimental work on graphene-based hydrogen storage systems, lithium batteries, and supercapacitors. Graphene could also be a two-dimensional (2D) sheet of carbon atoms in a very hexagonal (honeycomb) configuration. The carbon atoms in graphene are bonded with the SP2 hybrid. Graphene is the most recent member of the multidimensional graphite carbon family of materials. This family includes fullerene as zero-dimensional (0D) nanomaterials, carbon nanotubes as one-dimensional (1D) nanomaterials, and graphite as a three-dimensional (3D) material. The term graphene was first coined in 1986 to form the word graphite and a suffix (s) per polycyclic aromatic hydrocarbons. Additionally, to monolayer and bilayer graphene, graphene layers from 3 to 10 layers are called few-layer graphene and between 10 and 30 layers are called multiplayer graphene, thick graphene, or nanocrystals. Graphene is typically expected to contain only one layer, but there is considerable interest in researching bilayer and low-layer graphene. There are several methods for producing graphene, each with its own advantages and disadvantages. Graphene-based materials have great potential to be employed in supercapacitors due to their unique two-dimensional structure and inherent physical properties like excellent electrical conductivity and large area. This text summarizes recent developments within the sector of supercapacitors, including double-layer capacitors and quasi-capacitors. The pros and cons of using them in supercapacitors are discussed. Compared to traditional electrodes, graphene-based materials show some new properties and mechanisms within the method of energy storage and release. During this paper, we briefly describe carbon structures, particularly graphene, and also the history of graphene discovery, and briefly describe the synthesis methods, properties, characterization methods, and applications of graphene....

Topics
  • impedance spectroscopy
  • Carbon
  • nanotube
  • Hydrogen
  • two-dimensional
  • Lithium
  • electrical conductivity
  • one-dimensional