Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lett, Jayasingh Anita

  • Google
  • 1
  • 5
  • 94

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Synthesis and evaluation of the structural, optical, and antibacterial properties of copper oxide nanoparticles94citations

Places of action

Chart of shared publication
Marlinda, Ab Rahman
1 / 3 shared
Al-Douri, Yarub
1 / 3 shared
Johan, Mohd Rafie
1 / 5 shared
Vennila, Selvaraj
1 / 1 shared
Sagadevan, Suresh
1 / 8 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Marlinda, Ab Rahman
  • Al-Douri, Yarub
  • Johan, Mohd Rafie
  • Vennila, Selvaraj
  • Sagadevan, Suresh
OrganizationsLocationPeople

article

Synthesis and evaluation of the structural, optical, and antibacterial properties of copper oxide nanoparticles

  • Marlinda, Ab Rahman
  • Al-Douri, Yarub
  • Johan, Mohd Rafie
  • Vennila, Selvaraj
  • Lett, Jayasingh Anita
  • Sagadevan, Suresh
Abstract

The nanostructured material, due to their outstanding applications in various fields of science and technology; metal and metal oxide nano are exclusively explored in the progress of nanosized materials. The transition metal oxides including CuO is are used for magnetic storage devices, solar energy applications, sensors, as a catalyst in reactions, as electrode materials in supercapacitors and to tune the semiconducting properties of materials. The current work focuses on the synthesis of CuO nanoparticles (NPs) by combustion technique for various annealing (100°C and 300°C) using ascorbic acid as a capping agent. The XRD pattern confirms that the CuO NPs exhibit the monoclinic structure. The optical properties are investigated using UV–Vis absorption spectra. Further, the refractive index, optical dielectric constant and bulk modulus were investigated using the specific empirical model as a function of temperature. The FTIR spectrum shows that the band in the range 450–500 cm−1 confirms the formation of CuO NPs. The SEM images revealed that the spherical surface morphology of the CuO NPs. The Elemental analysis and the particle size were confirmed by elemental dispersive X-ray analysis (EDX) and particle size analyzer. Moreover, the antibacterial activity of CuO nanoparticles was investigated using E. coli, S. typhi, M. luteus, P. fluorescent, S. flexneri, and V. cholera bacteria. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • x-ray diffraction
  • dielectric constant
  • combustion
  • copper
  • annealing
  • Energy-dispersive X-ray spectroscopy
  • elemental analysis
  • bulk modulus