Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Costa, Mário

  • Google
  • 1
  • 4
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Nondestructive analysis of Portuguese “dinheiros” using XRF: overcoming patina constraints9citations

Places of action

Chart of shared publication
Carvalho, M. L.
1 / 17 shared
Pessanha, Sofia
1 / 13 shared
Oliveira, Maria Inês
1 / 1 shared
Jorge, Maria Estrela M.
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Carvalho, M. L.
  • Pessanha, Sofia
  • Oliveira, Maria Inês
  • Jorge, Maria Estrela M.
OrganizationsLocationPeople

article

Nondestructive analysis of Portuguese “dinheiros” using XRF: overcoming patina constraints

  • Carvalho, M. L.
  • Pessanha, Sofia
  • Costa, Mário
  • Oliveira, Maria Inês
  • Jorge, Maria Estrela M.
Abstract

<p>“Dinheiros” are the first Portuguese coins, minted with a billon alloy (majority-based copper alloyed with silver). In this work, a set of “dinheiros” from D. Fernando of Portugal was analyzed and the composition of the alloy was compared with other “dinheiros” from previous reigns. Although the coins were in good state of conservation and no active corrosion was macroscopically observable, they still presented a corrosion layer of unknown thickness that would impair the XRF quantitative determinations. In order to overcome this hindrance, the silver K/L intensity ratios were determined and compared for the analyzed samples in order to choose “clean” spots for quantitative analysis. The results show a clear decrease in the Ag content: from 7–9 % in the previous reigns to 0.2–0.3 % in the coins attributed to D. Fernando. The silver content determined is very comparable to the silver content determined in other copper or bronze artifacts analyzed, leading us to believe that this low amount of silver was not intentionally introduced to create a billon alloy but relates to impurities present in the original mineral specimen.</p>

Topics
  • impedance spectroscopy
  • mineral
  • silver
  • corrosion
  • copper
  • bronze
  • quantitative determination method
  • X-ray fluorescence spectroscopy