People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hess, Wayne P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2013Photoemission Electron Microscopy of a Plasmonic Silver Nanoparticle Trimercitations
- 2013Silver nanorod arrays for photocathode applicationscitations
- 2013Plasmon-Induced Optical Field Enhancement studied by Correlated Scanning and Photoemission Electron Microscopycitations
- 2012Near-field focused photoemission from polystyrene microspheres studied with photoemission electron microscopycitations
- 2011Plasmonic enhancement of thin-film solar cells using gold-black coatingscitations
- 2011Plasmonic Field Enhancement of Individual Nanoparticles by Correlated Scanning and Photoemission Electron Microscopycitations
- 2010Effect of Surface Charge on Laser-induced Neutral Atom Desorptioncitations
- 2007An In Situ Study of the Martensitic Transformation in Shape Memory Alloys Using Photoemission Electron Microscopycitations
- 2007Study of Martensitic Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopycitations
- 2007Real Time Study of Cu Diffusion Through a Ru Thin Film by Photoemission Electron Microscopy (PEEM)
- 2007Study of Copper Diffusion Through Ruthenium Thin Film by Photoemission Electron Microscopycitations
- 2007Photoemission Electron Microscopy of TiO2 Anatase Films Embedded with Rutile Nanocrystalscitations
- 2006In Situ Photoelectron Emission Microscopy of a Thermally Induced Martensitic Transformation in a CuZnAI Shape Memory Alloycitations
- 2006Laser-Induced Oxygen Vacancy Formation and Diffusion on TiO2(110) Surfaces Probed by Photoemission Electron Microscopycitations
- 2005Surface Electronic Properties and Site-Specific Laser Desorption Processes of Highly Structured Nanoporous MgO Thin Filmscitations
- 2002"EXAFS Study of Rare-Earth Element Coordination in Calcite"citations
Places of action
Organizations | Location | People |
---|
article
Effect of Surface Charge on Laser-induced Neutral Atom Desorption
Abstract
When an ionic metal oxide crystal is cleaved, inhomogeneous electrical charging of the surface can be a result. Such an effect has been well-documented in magnesium oxide (100). For example, recent rigorous AFM studies indicate that nanoscale charged clusters of MgO are created during cleavage, with high concentrations often located at terrace step edges.[1] In addition, ablation processes of freshly cleaved magnesium oxide crystals may be effected by remnant surface charging and microstructures.[2] We report here that such surface charging strongly impacts even neutral atom desorption, even under conditions of extremely mild excitation of surface terrace features. In our experiments, single crystal MgO (100) is cleaved in air and placed in an ultra-high vacuum chamber (UHV). We irradiate the crystal at 6.4 eV, photon energy resonant with five-coordinated (5-C) terrace sites and probe desorbing neutral oxygen atoms. It is found that a significant fraction of desorbed neutral oxygen atoms from the charged surface possess kinetic energies in excess of 0.7 eV. This is in contrast to uncharged samples (discharged in vacuo over 24 hours) that display a near-thermal oxygen atom distribution.