Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lu, Chih-Yuan

  • Google
  • 1
  • 6
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Laser and Electrical Current Induced Phase Transformation of In<sub>2</sub>Se<sub>3</sub> Semiconductor thin film on Si(111)18citations

Places of action

Chart of shared publication
Ohuchi, Fumio S.
1 / 3 shared
Olmstead, Marjorie A.
1 / 1 shared
Yitamben, Esmeralda N.
1 / 1 shared
Joly, Alan G.
1 / 16 shared
Shamberger, Patrick J.
1 / 2 shared
Beck, Kenneth M.
1 / 17 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Ohuchi, Fumio S.
  • Olmstead, Marjorie A.
  • Yitamben, Esmeralda N.
  • Joly, Alan G.
  • Shamberger, Patrick J.
  • Beck, Kenneth M.
OrganizationsLocationPeople

article

Laser and Electrical Current Induced Phase Transformation of In<sub>2</sub>Se<sub>3</sub> Semiconductor thin film on Si(111)

  • Ohuchi, Fumio S.
  • Olmstead, Marjorie A.
  • Yitamben, Esmeralda N.
  • Joly, Alan G.
  • Shamberger, Patrick J.
  • Lu, Chih-Yuan
  • Beck, Kenneth M.
Abstract

Phase transformation of thin film (~30 nm) <sub>2</sub>Se<sub>3</sub> /Si(111) (amorphous → crystalline) was performed by resistive annealing and the reverse transformation (crystalline → amorphous) was performed by nanosecond laser annealing. As an intrinsic-vacancy, binary chalcogenide semiconductor, <sub>2</sub>Se<sub>3</sub>is of interest for non-volatile phase-change memory. Amorphous In<sub>x</sub>Se<sub>y</sub> was deposited at room temperature on Si(111) after pre-deposition of a crystalline <sub>2</sub>Se<sub>3</sub>buffer layer (6.4 Å). Upon resistive annealing to 380°C, the film was transformed into a y-<sub>2</sub>Se<sub>3</sub>single crystal with its {0001} planes parallel to the Si (111) substrate and parallel to Si , as evidenced by scanning tunneling microscopy, low energy electron diffraction, and x-ray diffraction. Laser annealing with 20 nanosecond pulses (0.1 milliJoules/pulse) re-amorphized the region exposed to the laser beam, as observed with photoemission electron microscopy (PEEM). The amorphous phase in PEEM appears dark, likely due to abundant defect levels inhibiting electron emission from the amorphous In<sub>x</sub>Se<sub>y</sub> film.

Topics
  • Deposition
  • impedance spectroscopy
  • single crystal
  • amorphous
  • phase
  • x-ray diffraction
  • thin film
  • semiconductor
  • electron microscopy
  • annealing
  • vacancy
  • low energy electron diffraction
  • scanning tunneling microscopy