Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Esteves, J.

  • Google
  • 1
  • 10
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Non-classical hereditary hemochromatosis in Portugal: novel mutations identified in iron metabolism-related genes.34citations

Places of action

Chart of shared publication
Faustino, Paula
1 / 2 shared
Ai, Mendes
1 / 1 shared
Martins, R.
1 / 23 shared
Ar, Nunes
1 / 1 shared
Correia, M.
1 / 1 shared
Ferro, Ana Margarida
1 / 1 shared
Fleming, R.
1 / 1 shared
Gomes, S.
1 / 15 shared
Cerqueira, Rute
1 / 1 shared
Picanço, I.
1 / 1 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Faustino, Paula
  • Ai, Mendes
  • Martins, R.
  • Ar, Nunes
  • Correia, M.
  • Ferro, Ana Margarida
  • Fleming, R.
  • Gomes, S.
  • Cerqueira, Rute
  • Picanço, I.
OrganizationsLocationPeople

article

Non-classical hereditary hemochromatosis in Portugal: novel mutations identified in iron metabolism-related genes.

  • Faustino, Paula
  • Ai, Mendes
  • Martins, R.
  • Ar, Nunes
  • Correia, M.
  • Ferro, Ana Margarida
  • Fleming, R.
  • Gomes, S.
  • Cerqueira, Rute
  • Esteves, J.
  • Picanço, I.
Abstract

The most frequent genotype associated with Hereditary hemochromatosis is the homozygosity for C282Y, a common HFE mutation. However, other mutations in HFE, transferrin receptor 2 (TFR2), hemojuvelin (HJV) and hepcidin (HAMP) genes, have also been reported in association with this pathology. A mutational analysis of these genes was carried out in 215 Portuguese iron-overloaded individuals previously characterized as non-C282Y or non-H63D homozygous and non-compound heterozygous. The aim was to determine the influence of these genes in the development of iron overload phenotypes in our population. Regarding HFE, some known mutations were found, as S65C and E277K. In addition, three novel missense mutations (L46W, D129N and Y230F) and one nonsense mutation (Y138X) were identified. In TFR2, besides the I238M polymorphism and the rare IVS5 -9T-->A mutation, a novel missense mutation was detected (F280L). Concerning HAMP, the deleterious mutation 5'UTR -25G-->A was found once, associated with Juvenile Hemochromatosis. In HJV, the A310G polymorphism, the novel E275E silent alteration and the novel putative splicing mutation (IVS2 +395C-->G) were identified. In conclusion, only a few number of mutations which can be linked to iron overload was found, revealing their modest contribution for the development of this phenotype in our population, and suggesting that their screening in routine diagnosis is not cost-effective.

Topics
  • impedance spectroscopy
  • compound
  • iron