Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Attenberger, Ulrike I.

  • Google
  • 1
  • 14
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Deeplasia: deep learning for bone age assessment validated on skeletal dysplasias16citations

Places of action

Chart of shared publication
Javanmardi, Behnam
1 / 1 shared
Krawitz, Peter
1 / 1 shared
Born, Mark
1 / 1 shared
Arellano, Miguel Angel Ibarra
1 / 1 shared
Mohnike, Klaus
1 / 1 shared
Keller, Alexandra
1 / 1 shared
Hustinx, Alexander
1 / 1 shared
Madajieu, Yolande E. D.
1 / 1 shared
Pfäffle, Roland
1 / 1 shared
Rassmann, Sebastian
1 / 1 shared
Nöthen, Markus
1 / 2 shared
Hsieh, Tzung-Chien
1 / 1 shared
Skaf, Kyra
1 / 1 shared
Gausche, Ruth
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Javanmardi, Behnam
  • Krawitz, Peter
  • Born, Mark
  • Arellano, Miguel Angel Ibarra
  • Mohnike, Klaus
  • Keller, Alexandra
  • Hustinx, Alexander
  • Madajieu, Yolande E. D.
  • Pfäffle, Roland
  • Rassmann, Sebastian
  • Nöthen, Markus
  • Hsieh, Tzung-Chien
  • Skaf, Kyra
  • Gausche, Ruth
OrganizationsLocationPeople

article

Deeplasia: deep learning for bone age assessment validated on skeletal dysplasias

  • Javanmardi, Behnam
  • Attenberger, Ulrike I.
  • Krawitz, Peter
  • Born, Mark
  • Arellano, Miguel Angel Ibarra
  • Mohnike, Klaus
  • Keller, Alexandra
  • Hustinx, Alexander
  • Madajieu, Yolande E. D.
  • Pfäffle, Roland
  • Rassmann, Sebastian
  • Nöthen, Markus
  • Hsieh, Tzung-Chien
  • Skaf, Kyra
  • Gausche, Ruth
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Skeletal dysplasias collectively affect a large number of patients worldwide. Most of these disorders cause growth anomalies. Hence, evaluating skeletal maturity via the determination of bone age (BA) is a useful tool. Moreover, consecutive BA measurements are crucial for monitoring the growth of patients with such disorders, especially for timing hormonal treatment or orthopedic interventions. However, manual BA assessment is time-consuming and suffers from high intra- and inter-rater variability. This is further exacerbated by genetic disorders causing severe skeletal malformations. While numerous approaches to automate BA assessment have been proposed, few are validated for BA assessment on children with skeletal dysplasias.</jats:p></jats:sec><jats:sec><jats:title>Objective</jats:title><jats:p>We present Deeplasia, an open-source prior-free deep-learning approach designed for BA assessment specifically validated on patients with skeletal dysplasias.</jats:p></jats:sec><jats:sec><jats:title>Materials and methods</jats:title><jats:p>We trained multiple convolutional neural network models under various conditions and selected three to build a precise model ensemble. We utilized the public BA dataset from the Radiological Society of North America (RSNA) consisting of training, validation, and test subsets containing 12,611, 1,425, and 200 hand and wrist radiographs, respectively. For testing the performance of our model ensemble on dysplastic hands, we retrospectively collected 568 radiographs from 189 patients with molecularly confirmed diagnoses of seven different genetic bone disorders including achondroplasia and hypochondroplasia. A subset of the dysplastic cohort (149 images) was used to estimate the test–retest precision of our model ensemble on longitudinal data.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The mean absolute difference of Deeplasia for the RSNA test set (based on the average of six different reference ratings) and dysplastic set (based on the average of two different reference ratings) were 3.87 and 5.84 months, respectively. The test–retest precision of Deeplasia on longitudinal data (2.74 months) is estimated to be similar to a human expert.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>We demonstrated that Deeplasia is competent in assessing the age and monitoring the development of both normal and dysplastic bones.</jats:p></jats:sec><jats:sec><jats:title>Graphical Abstract</jats:title></jats:sec>

Topics
  • impedance spectroscopy
  • size-exclusion chromatography