Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kunniger, Tina

  • Google
  • 1
  • 3
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Synergistic effects of enzymatic decomposition and mechanical stress in wood degradation9citations

Places of action

Chart of shared publication
Thybring, Emil E.
1 / 3 shared
Digaitis, Ramūnas
1 / 1 shared
Thygesen, Lisbeth Garbrecht
1 / 9 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Thybring, Emil E.
  • Digaitis, Ramūnas
  • Thygesen, Lisbeth Garbrecht
OrganizationsLocationPeople

article

Synergistic effects of enzymatic decomposition and mechanical stress in wood degradation

  • Thybring, Emil E.
  • Kunniger, Tina
  • Digaitis, Ramūnas
  • Thygesen, Lisbeth Garbrecht
Abstract

Wood mechanical properties deteriorate due to formation of cracks caused by mechanical loading and due to the loss of structural polymers as a result of enzymatic activity. How these processes contribute to wood degradation and whether the interaction between mechanics and enzymes accelerate wood degradation was studied. Lignocellulolytic enzymes and dynamic mechanical loading, either alone, in combination or successively were applied to native and hydrothermally modified Scots pine (Pinus sylvestris L.) veneers. Tensile testing was employed to evaluate the changes in mechanical properties of the specimens. Fibre saturation point and hydroxyl group accessibility before and after hydrothermal modification and subsequent enzymatic hydrolysis were assessed by differential scanning calorimetry and dynamic vapour sorption techniques. The study revealed that simultaneous mechanical and enzymatic treatments lead to a significant reduction in Scots pine tensile strength while successive application of the two treatments did not reduce wood tensile strength to the same extent. The finding points towards the importance of synergy between abiotic and biotic factors in wood deterioration. Further, hydrothermal modification, unlike enzymatic hydrolysis, significantly affected wood hygroscopicity, but did not influence how the wood reacted to the mechanical and enzymatic treatments.

Topics
  • polymer
  • crack
  • strength
  • differential scanning calorimetry
  • tensile strength
  • wood
  • enzymatic decomposition