Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Achleitner, Birgit

  • Google
  • 1
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024LIBS as a novel tool for the determination of the imidization degree of polyimides2citations

Places of action

Chart of shared publication
Girault, Laurie
1 / 1 shared
Limbeck, Andreas
1 / 5 shared
Knaack, Patrick
1 / 3 shared
Nelhiebel, Michael
1 / 3 shared
Larisegger, Silvia
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Girault, Laurie
  • Limbeck, Andreas
  • Knaack, Patrick
  • Nelhiebel, Michael
  • Larisegger, Silvia
OrganizationsLocationPeople

article

LIBS as a novel tool for the determination of the imidization degree of polyimides

  • Achleitner, Birgit
  • Girault, Laurie
  • Limbeck, Andreas
  • Knaack, Patrick
  • Nelhiebel, Michael
  • Larisegger, Silvia
Abstract

<jats:title>Abstract</jats:title><jats:p>Due to their outstanding chemical and physical properties, polyimides are widely used in industrial applications. The degree of imidization of polyimides significantly influences their properties, making it an important factor in tailoring the material for specific applications. Imidization refers to the process of converting a precursor poly(amic acid) by removing water, and it is essential to analyze this process in detail to tune the final structure and properties of the material. Conventional techniques for this task include Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), or differential scanning calorimetry (DSC), but they lack the possibility of spatially and/or depth-resolved analysis or do not enable in-line monitoring capabilities. To overcome these limitations, we propose laser-induced breakdown spectroscopy (LIBS) as a powerful tool for the monitoring of the imidization reaction. To establish a measurement method, a total of 130 in-house prepared, self-synthesized samples were thermally cured to exhibit varying imidization degrees. IR spectroscopy served as a reference technique during method development, and a novel formula for calculating the degree of imidization, based on the C<jats:sub>2</jats:sub> and H signal trends, was introduced. The calculated imidization degrees of model thin films based on LIBS were in good accordance with the IR reference method although minor differences between the two methods were expected due to varying information depth and the size of the sampled area. Additionally, the robustness of the procedure was demonstrated by depth profiling of a stacked model polymer, spiking with commercially available additives and, ultimately, by analyzing industry-relevant polymer samples.</jats:p><jats:p><jats:bold>Graphical Abstract</jats:bold></jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • thin film
  • thermogravimetry
  • differential scanning calorimetry
  • Fourier transform infrared spectroscopy