Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brancewicz-Steinmetz, Emila

  • Google
  • 1
  • 2
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Revolutionizing transportation: an overview of 3D printing in aviation, automotive, and space industries25citations

Places of action

Chart of shared publication
Sawicki, Jacek
1 / 7 shared
Wawryniuk, Zuzanna
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Sawicki, Jacek
  • Wawryniuk, Zuzanna
OrganizationsLocationPeople

article

Revolutionizing transportation: an overview of 3D printing in aviation, automotive, and space industries

  • Sawicki, Jacek
  • Brancewicz-Steinmetz, Emila
  • Wawryniuk, Zuzanna
Abstract

<jats:title>Abstract</jats:title><jats:p>This review article provides a deep dive into the diverse landscape of Additive Manufacturing (AM) technologies and their significant impact on the automotive and aviation sectors. It starts by exploring various AM methodologies such as Fused Deposition Modeling (FDM), Stereolithography (SLA), Digital Light Processing (DLP), Selective Laser Sintering (SLS), Metal Jet Fusion (MJF), Binder Jetting (BJ), and Directed Energy Deposition (DED), with a specific focus on their applicability, strengths, and challenges within these industries. The article then delves into the practical applications of AM in rapid prototyping, functional part production, and component repair. The results highlight the versatility and precision of SLA and DLP, the strength and durability of SLS, and the potential of metal-based technologies like LPBF, SLM, EBM, and DMLS in manufacturing critical components. The integration of AM with automotive and aviation design underscores the transformative nature of these technologies, driving advancements in lightweight, intricate, and high-performance components. The review concludes by emphasising AM's significant opportunities and acknowledging the ongoing challenges in material properties, post-processing, and production scalability, thereby underscoring the necessity for future research and innovation in these sectors.</jats:p>

Topics
  • Deposition
  • strength
  • durability
  • directed energy deposition
  • sintering
  • laser sintering
  • binder jetting
  • static light scattering