Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rathore, Saurabh

  • Google
  • 1
  • 6
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Role of buttering layer composition on microstructural heterogeneity and mechanical properties of Alloy 617 and P92 steel dissimilar welded joints for future Indian AUSC program12citations

Places of action

Chart of shared publication
Sirohi, Sachin
1 / 4 shared
Singh, Vivek
1 / 2 shared
Pandey, Chandan
1 / 6 shared
Kumar, Amit
1 / 39 shared
Fydrych, Dariusz
1 / 4 shared
Gupta, Ankur
1 / 4 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Sirohi, Sachin
  • Singh, Vivek
  • Pandey, Chandan
  • Kumar, Amit
  • Fydrych, Dariusz
  • Gupta, Ankur
OrganizationsLocationPeople

article

Role of buttering layer composition on microstructural heterogeneity and mechanical properties of Alloy 617 and P92 steel dissimilar welded joints for future Indian AUSC program

  • Sirohi, Sachin
  • Singh, Vivek
  • Rathore, Saurabh
  • Pandey, Chandan
  • Kumar, Amit
  • Fydrych, Dariusz
  • Gupta, Ankur
Abstract

<jats:title>Abstract</jats:title><jats:p>Restrictive operating conditions (even exceeding 700 °C) of materials in advanced ultra super critical (AUSC) power plants and the need to minimize manufacturing and maintenance costs require the production of dissimilar metal welded joints (DMW). Significant differences in the physical and chemical properties of welded materials lead to phenomena that reduce the weldability of the metals used and force the search for solutions that limit unfavorable phenomena, e.g., the use of buttering layers. The study presents a comparison of two types of joints with Alloy 617 (UNS N06617) and ferritic P92 (UNS K92460) steel made using Inconel 82 (ENiCrFe-3) and Inconel 617 (ERNiCrCoMo-1) alloys buttering layer and the corresponding chemical composition of filler metals. All areas of the joints made with the gas tungsten arc welding process were subjected to structural investigations (optical microscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) and mechanical tests (microhardness, room and high temperature tensile, and toughness testing). Despite the more complicated welding procedure, sound welded joints were obtained with favorable properties resulting, inter alia, from the reduced thickness of the martensite layer in HAZ of P92 steel and the limited diffusion of alloy components compared to welded joints without the buttering layer. This also resulted in a reduction of the maximum hardness (especially in the case of Inconel 82 buttering—by 15–30 HV0.5 in comparison with Inconel 617 buttering) and an increase in strength while limiting the decrease in plasticity (even 663 MPa tensile strength and 21% of elongation for Inconel 617 buttered joint). Moreover, improved high-temperature performance (approximately 70–100 MPa) of the welded joint following the application of the buttering layer was confirmed. The presented results allow for drawing general conclusions that both proposed welding procedures can be recommended for use in the working conditions occurring at AUSC.</jats:p>

Topics
  • scanning electron microscopy
  • strength
  • steel
  • hardness
  • chemical composition
  • plasticity
  • Energy-dispersive X-ray spectroscopy
  • tensile strength
  • optical microscopy
  • tungsten
  • drawing