Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fernandes, Cristina M.

  • Google
  • 1
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Investigation on micro-milling of cemented carbide with ball nose and corner radius diamond-coated end mills4citations

Places of action

Chart of shared publication
Davim, J. Paulo
1 / 3 shared
Silva, Tiago E. F.
1 / 2 shared
Jesus, Abílio M. P. De
1 / 4 shared
Silva, Joana
1 / 5 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Davim, J. Paulo
  • Silva, Tiago E. F.
  • Jesus, Abílio M. P. De
  • Silva, Joana
OrganizationsLocationPeople

article

Investigation on micro-milling of cemented carbide with ball nose and corner radius diamond-coated end mills

  • Davim, J. Paulo
  • Silva, Tiago E. F.
  • Fernandes, Cristina M.
  • Jesus, Abílio M. P. De
  • Silva, Joana
Abstract

<jats:title>Abstract</jats:title><jats:p>Micro-milling of cemented carbides is a challenging task due to their high hardness, low toughness and high wear resistance. Ensuring good surface quality and dimensional accuracy is crucial for extending parts service life, which in turn enhances economical and environmental sustainability. This paper is mainly focused on evaluating surface formation mechanisms, scale effects, fracture behaviour and chip formation using distinct cemented carbide micro-milling tools with multi-layer diamond HF-CVD. In order to achieve higher precision and more efficient micro-milling operations on WC-15Co and WC-10Co, a systematic experimental approach has been carried out. The influence of cutting parameters, achievable surface quality and defects occurrence were thoroughly examined. Experimental results evidence the influence of operational conditions on the chip formation of cemented carbides as well as an important impact of the utilized cutting tool. Micro-pits, cracks, thin ploughing layer and fractured workpiece edges are amongst the observed surface damage mechanisms. A ductile cutting regime of the high-hardness composite material is confirmed, exhibited by the plastic deformation even when small depths of cut are considered.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • grinding
  • crack
  • milling
  • wear resistance
  • carbide
  • composite
  • hardness
  • chemical vapor deposition