Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Makhesana, Mayur A.

  • Google
  • 1
  • 7
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Machine vision-based gradient-boosted tree and support vector regression for tool life prediction in turning8citations

Places of action

Chart of shared publication
Khanna, Navneet
1 / 8 shared
Şirin, Şenol
1 / 2 shared
Patel, Kaushik M.
1 / 1 shared
Bagga, Prashant J.
1 / 1 shared
Krolczyk, Grzegorz
1 / 5 shared
Chauhan, Kavan C.
1 / 1 shared
Pala, Adarsh D.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Khanna, Navneet
  • Şirin, Şenol
  • Patel, Kaushik M.
  • Bagga, Prashant J.
  • Krolczyk, Grzegorz
  • Chauhan, Kavan C.
  • Pala, Adarsh D.
OrganizationsLocationPeople

article

Machine vision-based gradient-boosted tree and support vector regression for tool life prediction in turning

  • Khanna, Navneet
  • Şirin, Şenol
  • Makhesana, Mayur A.
  • Patel, Kaushik M.
  • Bagga, Prashant J.
  • Krolczyk, Grzegorz
  • Chauhan, Kavan C.
  • Pala, Adarsh D.
Abstract

<jats:title>Abstract</jats:title><jats:p>One of the essential elements of automated and intelligent machining processes is accurately predicting tool life. It also helps in achieving the goal of producing quality products with reduced production costs. This work proposes a computer vision-based tool wear monitoring and tool life prediction system using machine learning methods. Gradient-boosted trees and support vector machine (SVM) techniques are used to predict tool life. The experimental investigation on the CNC machine is conducted to study the applicability of the proposed tool wear monitoring system. Experiments are performed using workpiece material made of alloy steel and PVD-coated cutting inserts, and flank wear is monitored. An imaging system consisting of an industrial camera, lens, and LED ring light is mounted on the machine to capture tool wear zone images. Images are then processed by algorithms developed in MATLAB<jats:sup>®</jats:sup>. Boosted tree methods and the SVM methodology have 96% and 97% prediction accuracy, respectively. Validation tests are carried out to determine the accuracy of proposed models. It is observed that the prediction accuracy of boosted three and SVM is good, with a maximum error of 5.89% and 7.56%, respectively. The outcome of the study established that the developed system can monitor the tool wear with good accuracy and can be adopted in industries to optimize the utilization of tool inserts. </jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • physical vapor deposition
  • steel
  • machine learning