Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ye, Jiayu

  • Google
  • 3
  • 12
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Use of sensing, digitisation, and virtual object analyses to refine quality performance and increase production rate in additive manufacturingcitations
  • 2022In-situ monitoring of build height during powder-based laser metal deposition8citations
  • 2022Predictions of in-situ melt pool geometric signatures via machine learning techniques for laser metal deposition17citations

Places of action

Chart of shared publication
Cole, Ivan
3 / 25 shared
Bab-Hadiashar, Alireza
3 / 4 shared
Jun Toh, Rou
1 / 1 shared
Patel, Milan
3 / 6 shared
Asadi, Ehsan
1 / 1 shared
Awan, Sana
1 / 1 shared
Lomo, Felix N.
1 / 2 shared
Gautam, Subash
1 / 1 shared
Hassan, Ul
1 / 1 shared
Alam, Nazmul
3 / 6 shared
Jose, J.
1 / 4 shared
Hoseinnezhad, Reza
2 / 2 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Cole, Ivan
  • Bab-Hadiashar, Alireza
  • Jun Toh, Rou
  • Patel, Milan
  • Asadi, Ehsan
  • Awan, Sana
  • Lomo, Felix N.
  • Gautam, Subash
  • Hassan, Ul
  • Alam, Nazmul
  • Jose, J.
  • Hoseinnezhad, Reza
OrganizationsLocationPeople

article

In-situ monitoring of build height during powder-based laser metal deposition

  • Cole, Ivan
  • Bab-Hadiashar, Alireza
  • Patel, Milan
  • Ye, Jiayu
  • Hoseinnezhad, Reza
  • Alam, Nazmul
Abstract

A powder-based laser metal deposition (LMD) system can fabricate customised three-dimensional (3D) parts, layer by layer, based upon a computer-aided design (CAD) model. However, the deposition will not always feature the expected geometry due to excessive heat input and inconsistent powder flow. Due to the layer-by-layer nature of LMD, geometrical error in one layer is compounded in all following layers and may result in a build failure. Thus, it is critical to monitor online the track and layer height. This study developed an in-situ monitoring system integrating a webcam and a narrow bandpass filter. The laser/powder defocus distance was extracted from the melt pool images, and the track/layer height was calculated from the laser/powder defocusing distance and preprogramed layer spacing. The presented approach does not need additional illumination sources and is a non-intrusive online method. Therefore is a potential precursor to a feedback build height control system. It also can be used for measuring omnidirectional height, i.e. height in different build directions relative to the substrate, which has been tested by fabricating two thin-wall structures with customised shapes. These online-measured height data were successfully validated against dimensional measurements from an offline 3D scanner, thus demonstrating the online system’s potential utility in a feedback control system for ensuring acceptable part geometrical accuracy.

Topics
  • Deposition
  • impedance spectroscopy
  • melt
  • collision-induced dissociation