Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bocklisch, Steffen F.

  • Google
  • 1
  • 3
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Fuzzy pattern modeling of self-pierce riveting for data from experiments and computer simulations4citations

Places of action

Chart of shared publication
Drossel, Welf-Guntram
1 / 96 shared
Nemati, Amir
1 / 1 shared
Jäckel, Mathais
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Drossel, Welf-Guntram
  • Nemati, Amir
  • Jäckel, Mathais
OrganizationsLocationPeople

article

Fuzzy pattern modeling of self-pierce riveting for data from experiments and computer simulations

  • Drossel, Welf-Guntram
  • Nemati, Amir
  • Jäckel, Mathais
  • Bocklisch, Steffen F.
Abstract

<jats:title>Abstract</jats:title><jats:p>Modeling forms the basis for optimal control of complex technical processes in the context of industry 4.0 development and, hence, for high product quality as well as efficient production. For the mechanical joining process of self-pierce riveting with 11 input and 5 output variables, two modeling approaches based on (1) experimental data and (2) FEM computer simulation are outlined and performed. A physical modeling approach is ruled out due to the high problem dimensionality and complex nonlinear dynamic relationships between input and output variables. Alternatively, data-based approaches lead to Artificial Intelligence (AI) model designs. The experimental approach is cost- and resource-consuming; therefore, only a relatively small data set can be collected. Here, we present results from experimental trials that serve as representatives and are generalized by a description with high-dimensional parametric membership functions (fuzzification). The fuzzification procedure is also applied to the FEM computer simulation results. In principle, it can provide an arbitrarily large database. However, consequently, time- and computational effort increase considerably. Both data sets form the basis for parallel model building using the AI method of local fuzzy pattern models, which can be used to describe highly nonlinear input-output relationships by error-minimizing partitioning. Finally, the comparison of the results of the two modeling approaches is outlined. Finally, a coupled modeling strategy and future model adaptation are proposed. </jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • simulation
  • joining