Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Karganroudi, Sasan Sattarpanah

  • Google
  • 2
  • 9
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Effects of laser process parameters on the hardness profile of AISI 4340 cylindrical samples: statistical and experimental analyses3citations
  • 2021Experimental and numerical analysis on TIG Arc welding of stainless steel using RSM approach16citations

Places of action

Chart of shared publication
Moradi, Mahmoud
2 / 83 shared
Sadeghian, Amirhossein
1 / 6 shared
Barka, Noureddine
1 / 10 shared
Bensalem, Karim
1 / 1 shared
Rasouli, Seyed Alireza
1 / 1 shared
Ghoreishi, Majid
1 / 3 shared
Ibrahim, Hussein
1 / 1 shared
Lawrence, Jonathan
1 / 92 shared
Attar, Milad Aghaee
1 / 2 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Moradi, Mahmoud
  • Sadeghian, Amirhossein
  • Barka, Noureddine
  • Bensalem, Karim
  • Rasouli, Seyed Alireza
  • Ghoreishi, Majid
  • Ibrahim, Hussein
  • Lawrence, Jonathan
  • Attar, Milad Aghaee
OrganizationsLocationPeople

article

Effects of laser process parameters on the hardness profile of AISI 4340 cylindrical samples: statistical and experimental analyses

  • Moradi, Mahmoud
  • Sadeghian, Amirhossein
  • Barka, Noureddine
  • Bensalem, Karim
  • Karganroudi, Sasan Sattarpanah
Abstract

In the present paper, continuous Ytterbium Laser Systems (YLS) fiber laser hardening of cylindrical AISI 4340 steel specimens was studied using experimental and statistical analyses. Three laser parameters, namely laser power, laser feed speed, and sample rotation speed were selected to evaluate their influence on the depth of the hardened zone and the maximum surface hardness. Mathematical models were developed as a function of these three parameters and the analysis of variance (ANOVA) was used to conduct the statistical study. Microhardness measurements revealed three distinct regions in the heat-affected zone (HAZ) of all samples: the hardened zone (Z1) near the surface, with the highest value of hardness, the hardness loss zone (Z2), where hardness had started to decrease, and the overheated zone (Z3) adjacent to the core, with hardness values that were less than those of the base metal. Based on experimental measurements, a maximum surface hardness of 60.8 HRC was attained. Furthermore, the maximum depth of the hardened zone was observed as 500 µm. The microstructures of laser-hardened samples were studied using optical and scanning electron (SEM) microscopes. The hardened region appeared to have a hard martensitic microstructure. By comparing the predicted and measured data for maximum microhardness values, it was revealed that the models represent the experimental values with correlations close to 100%.

Topics
  • microstructure
  • surface
  • scanning electron microscopy
  • laser emission spectroscopy
  • steel
  • hardness
  • Ytterbium