Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aigbodion, Victor S.

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Soft computing-based process optimization in laser metal deposition of Ti-6Al-4 V3citations

Places of action

Chart of shared publication
Mahamood, Rasheedat
1 / 70 shared
Akinlabi, Esther Titilayo
1 / 235 shared
Adedeji, Paul A.
1 / 1 shared
Jen, Tien-Chien
1 / 10 shared
Ngwoke, Chukwubuikem C.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Mahamood, Rasheedat
  • Akinlabi, Esther Titilayo
  • Adedeji, Paul A.
  • Jen, Tien-Chien
  • Ngwoke, Chukwubuikem C.
OrganizationsLocationPeople

article

Soft computing-based process optimization in laser metal deposition of Ti-6Al-4 V

  • Mahamood, Rasheedat
  • Akinlabi, Esther Titilayo
  • Adedeji, Paul A.
  • Jen, Tien-Chien
  • Ngwoke, Chukwubuikem C.
  • Aigbodion, Victor S.
Abstract

<p>Parameter optimization is significant to a successful laser metal deposition (LMD). While conventional optimization methods have been used, the prowess of soft computing techniques is still less explored in LMD towards ensuring reduced experimental costs and throughput. This study develops a process optimization and wear volume prediction model for Ti-6Al-4 V using soft computing techniques. The particle swarm optimization (PSO) model was used to optimize a single objective function to determine optimal process parameters. A supervised learning model using artificial neural network (ANN) was developed to predict the wear volume from known process parameters. The model hyperparameters were tuned by several trials until optimal parameters were obtained. The ANN model was trained and tested with 70% and 30% of the dataset, respectively. The ANN model was evaluated using known statistical performance metrics and user-friendly interfaces, where process optimization can be carried out within upper and lower design bounds, which were developed for the two intelligent models. From the model evaluation result, a root mean square error (RMSE) of 0.0052, mean absolute deviation (MAD) of 0.0031, coefficient of determination (R<sup>2</sup>) of 0.9733, and a mean absolute percentage error (MAPE) of 14.0152 was obtained from the model testing phase. Overall, soft computing techniques prove helpful in ensuring process integrity, efficient, and cost-effective LMD.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • phase
  • laser emission spectroscopy