Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Albergt, Max

  • Google
  • 1
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Combined robot-based manufacturing and machining of multi-material components5citations

Places of action

Chart of shared publication
David, Martin
1 / 4 shared
Droß, Marcel
1 / 2 shared
Reichler, Ann-Kathrin
1 / 3 shared
Hoffmeister, Hans-Werner
1 / 2 shared
Dröder, Klaus
1 / 24 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • David, Martin
  • Droß, Marcel
  • Reichler, Ann-Kathrin
  • Hoffmeister, Hans-Werner
  • Dröder, Klaus
OrganizationsLocationPeople

article

Combined robot-based manufacturing and machining of multi-material components

  • David, Martin
  • Droß, Marcel
  • Reichler, Ann-Kathrin
  • Hoffmeister, Hans-Werner
  • Dröder, Klaus
  • Albergt, Max
Abstract

<jats:title>Abstract</jats:title><jats:p>The growing demand for individualized products is becoming more and more significant and leads to a reduction in batch sizes. In particular, the production of multi-material components for lightweight design presents new challenges to the manufacturing process. This is evident when it comes to the production of individual parts, as today’s processes are characterized by high tool costs and manual operations. The described challenge can be overcome by a robot-based manufacturing cell allowing the use of a novel, modular process chain in which metal parts are mechanically pre-treated, subsequently completed by additive plastic application, and afterwards finalized in a machining step to achieve the required surface qualities and geometries. In order to realize the novel process chain, robot-based solutions for free-form metal sheet processing, increased interlayer bonding strength of plastic, and multi-material machining with integrated chip extraction have to be found. Therefore, this paper presents the first approach of a robot-guided surface structuring end-effector and a concept for a direct extraction hood, which is able to be adapted specifically to the movement of the robot and the part surface, so free-form surfaces can be machined. Based on this, first experimental studies for increasing the interlayer bonding strength of plastic were carried out using an extruder set up to applicate thermoplastics onto metal at high deposition rates. To define the positioning accuracy for a robot-guided structuring process, different point to point movements have been investigated.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • extraction
  • strength
  • thermoplastic