Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Garrick, Andrew J. H.

  • Google
  • 1
  • 2
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Developing a novel manufacturing method to produce stiffened plate structures2citations

Places of action

Chart of shared publication
Galloway, Alexander
1 / 33 shared
Toumpis, Athanasios
1 / 30 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Galloway, Alexander
  • Toumpis, Athanasios
OrganizationsLocationPeople

article

Developing a novel manufacturing method to produce stiffened plate structures

  • Galloway, Alexander
  • Garrick, Andrew J. H.
  • Toumpis, Athanasios
Abstract

Isogrid is a highly efficient stiffened plate structure which was developed in the aerospace industry for use in rocketry and space structures. Its current form is unviable outwith these applications, as the available production methods are expensive due to excessive machining time in addition to considerable material wastage. The method detailed in this body of work was developed to manufacture Isogrid in a more efficient manner, so that its weight saving properties may become more widely accessible. This novel Isogrid manufacturing process uses a rolling mill with patterned rollers to imprint a 3D structure of ribs into the surface of a billet material. To validate this method, a patterned roller was designed, manufactured and fitted to a rolling mill to produce sheets of aluminium AA1050 Isogrid. This process successfully created Isogrid in a sustainable, rapid manner. The samples produced were tested in 3-point bending and compared against flat plate of the same material. They were found to be 100% stronger in bending compared to a neutral flat plate with a strength shape factor of 1.6 after discounting the effect of cold work.

Topics
  • impedance spectroscopy
  • surface
  • aluminium
  • strength