Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hill, S.

  • Google
  • 2
  • 9
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Isolation of a triplet benzene dianion29citations
  • 2021The influence of soak temperature and forging lubricant on surface properties of steel forgings1citations

Places of action

Chart of shared publication
Vieru, Veacheslav
1 / 3 shared
Gould, C. A.
1 / 1 shared
Britt, R. D.
1 / 1 shared
Marchiori, D. A.
1 / 1 shared
Marbey, J.
1 / 1 shared
Long, J. R.
1 / 1 shared
Chibotaru, L. F.
1 / 1 shared
Turner, Richard
1 / 27 shared
Wardle, P.
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Vieru, Veacheslav
  • Gould, C. A.
  • Britt, R. D.
  • Marchiori, D. A.
  • Marbey, J.
  • Long, J. R.
  • Chibotaru, L. F.
  • Turner, Richard
  • Wardle, P.
OrganizationsLocationPeople

article

The influence of soak temperature and forging lubricant on surface properties of steel forgings

  • Turner, Richard
  • Wardle, P.
  • Hill, S.
Abstract

<p>A small series of ring compression tests were performed on BS970:708M40 alloy steel. The samples were tested using a 2-factor temperature variable, and a 4-factor lubricant variable, as the design parameters. Two differing soak temperatures were used, namely 1030 °C and 1300 °C respectively. The lubricants applied at the billet to tooling interface were synthetic water–based, graphite water–based, graphite and molybdenum disulphide viscous grease, and finally, unlubricated samples were tested. The ring compression tests were performed using a traditional drop forging hammer and induction heating to minimise any unintentional process variability. The impact that the two varying process parameters have upon the compression sample was then assessed by measuring each sample’s surface hardness and surface roughness prior to and post forging with fully calibrated equipment. It was demonstrated that the higher soak temperature of 1300 °C yielded a lower surface hardness value and higher surface roughness than the lower soak temperature, 1030 °C. The two water-based lubricants offered negligible change in results compared with the unlubricated forging, strongly suggesting that the lubricants were evaporated off the surface prior to forging. However, the results from the graphite–molybdenum disulphate grease do indicate in particular higher surface roughness than other lubricants, and a non-symmetric distortion pattern.</p>

Topics
  • surface
  • molybdenum
  • steel
  • hardness
  • compression test
  • forging