Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Naidoo, Lester Caleb

  • Google
  • 1
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Numerical modelling and microstructural evolution of hybrid Ti-6Al-4V/Ti-Al-Si-Cu composite coating5citations

Places of action

Chart of shared publication
Johnson, Oluwagbenga Temidayo
1 / 2 shared
Akinlabi, Esther Titilayo
1 / 235 shared
Akinlabi, Prof Stephen A.
1 / 54 shared
Fatoba, Olawale Samuel
1 / 9 shared
Erinosho, Mutiu Folorunsho
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Johnson, Oluwagbenga Temidayo
  • Akinlabi, Esther Titilayo
  • Akinlabi, Prof Stephen A.
  • Fatoba, Olawale Samuel
  • Erinosho, Mutiu Folorunsho
OrganizationsLocationPeople

article

Numerical modelling and microstructural evolution of hybrid Ti-6Al-4V/Ti-Al-Si-Cu composite coating

  • Johnson, Oluwagbenga Temidayo
  • Akinlabi, Esther Titilayo
  • Akinlabi, Prof Stephen A.
  • Fatoba, Olawale Samuel
  • Erinosho, Mutiu Folorunsho
  • Naidoo, Lester Caleb
Abstract

<p>Additive manufacturing is a commercially competitive manufacturing technique with the possibility of altering the entire perception of design and fabrication. It offers suitable capabilities for the building and repairing applications in the aerospace industry, which usually requires high level of accuracy and customization of parts which usually use materials known to pose difficulties in fabrication such as titanium alloys. The major factors that determine the formation of the dendritic structure are the thermal gradients within the substrate during cooling and the cooling rates. The rapid cooling and input of heat locally during the laser deposition process resulted in metallurgical modifications such as the formation of a complete martensitic structure, a mixture of columnar grains and layer of bands. During the deposition process, the metal solidified, and the developed model enabled predictability of microstructural development and the sizes of the grain growth. The 3D numerical investigation provided clarification and had substantial effects in the prediction of the overall resulting molten pool size and geometry size.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • grain
  • composite
  • titanium
  • titanium alloy
  • additive manufacturing
  • grain growth