Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Moghri, Mahdi

  • Google
  • 1
  • 3
  • 58

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011The selection of milling parameters by the PSO-based neural network modeling method58citations

Places of action

Chart of shared publication
Razfar, Mohammad Reza
1 / 3 shared
Asadnia, Mohsen
1 / 31 shared
Farahnakian, Masoud
1 / 2 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Razfar, Mohammad Reza
  • Asadnia, Mohsen
  • Farahnakian, Masoud
OrganizationsLocationPeople

article

The selection of milling parameters by the PSO-based neural network modeling method

  • Razfar, Mohammad Reza
  • Moghri, Mahdi
  • Asadnia, Mohsen
  • Farahnakian, Masoud
Abstract

<p>During the past decade, polymer nanocomposites have emerged relatively as a new and rapidly developing class of composite materials and attracted considerable investment in research and development worldwide. An increase in the desire for personalized products has led to the requirement of the direct machining of polymers for personalized products. In this work, the effect of cutting parameters (spindle speed and feed rate) and nanoclay (NC) content on machinability properties of polyamide-6/nanoclay (PA-6/NC) nanocomposites was studied by using high speed steel end mill. This paper also presents a novel approach for modeling cutting forces and surface roughness in milling PA-6/NC nanocomposite materials, by using particle swarm optimization-based neural network (PSONN) and the training capacity of PSONN is compared to that of the conventional neural network. In this regard, advantages of the statistical experimental algorithm technique, experimental measurements artificial neural network and particle swarm optimization algorithm, are exploited in an integrated manner. The results indicate that the nanoclay content on PA-6 significantly decreases the cutting forces, but does not have a considerable effect on surface roughness. Also the obtained results for modeling cutting forces and surface roughness have shown very good training capacity of the proposed PSONN algorithm in comparison to that of a conventional neural network.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • polymer
  • grinding
  • milling
  • high speed steel