Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Conceicao Antonio, Cac

  • Google
  • 3
  • 1
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2013Uncertainty assessment approach for composite structures based on global sensitivity indices25citations
  • 2013Local and global Pareto dominance applied to optimal design and material selection of composite structures18citations
  • 2010Reliability Assessment of Composite Structures with Multiple Failure Modescitations

Places of action

Chart of shared publication
Hoffbauer, Ln
2 / 9 shared
Chart of publication period
2013
2010

Co-Authors (by relevance)

  • Hoffbauer, Ln
OrganizationsLocationPeople

article

Local and global Pareto dominance applied to optimal design and material selection of composite structures

  • Conceicao Antonio, Cac
Abstract

The optimal design of hybrid composite structures considering sizing, topology and material selection is addressed in a multi-objective optimization framework. The proposed algorithm, denoted by Multi-objective Hierarchical Genetic Algorithm (MOHGA), searches for the Pareto-optimal front enforcing population diversity by using a hierarchical genetic structure based on co-evolution of multi-populations. An age structured population is used to store the ranked solutions aiming to obtain the Pareto front. A self-adaptive genetic search incorporating Pareto dominance and elitism is presented. Two concepts of dominance are used: the first one denoted by local non-dominance is implemented at the isolation stage of populations and the second one called global non-dominance is considered at age structured population. The age control emulates the human life cycle and enables to apply the species conservation paradigm. A new mating and offspring selection mechanisms considering age control and dominance are adopted in crossover operator applied to age-structured population. Application to hybrid composite structures requiring the compromise between minimum strain energy and minimum weight is presented. The structural integrity is checked for stress, buckling and displacement constraints considered in the multi-objective optimization. The design variables are ply angles and ply thicknesses of shell laminates, the cross section dimensions of beam stiffeners and the variables associated with the material distribution at laminate level and structure level. The properties of the proposed approach are discussed in detail.

Topics
  • impedance spectroscopy
  • composite