Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Holman, R. R.

  • Google
  • 1
  • 6
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2002Human calcium/calmodulin-dependent protein kinase II gamma gene (CAMK2G): cloning, genomic structure and detection of variants in subjects with type II diabetes.16citations

Places of action

Chart of shared publication
Ashcroft, S. J.
1 / 1 shared
Desai, M.
1 / 2 shared
Levy, J. C.
1 / 1 shared
Clark, A.
1 / 3 shared
Frayling, T. M.
1 / 1 shared
Hattersley, A. T.
1 / 1 shared
Chart of publication period
2002

Co-Authors (by relevance)

  • Ashcroft, S. J.
  • Desai, M.
  • Levy, J. C.
  • Clark, A.
  • Frayling, T. M.
  • Hattersley, A. T.
OrganizationsLocationPeople

article

Human calcium/calmodulin-dependent protein kinase II gamma gene (CAMK2G): cloning, genomic structure and detection of variants in subjects with type II diabetes.

  • Ashcroft, S. J.
  • Desai, M.
  • Levy, J. C.
  • Holman, R. R.
  • Clark, A.
  • Frayling, T. M.
  • Hattersley, A. T.
Abstract

Ca(2+)/calmodulin-dependent protein kinase II, is expressed in the pancreatic beta cells and is activated by glucose and other secretagogues in a manner correlating with insulin secretion. The activation of Ca(2+)/calmodulin-dependent protein kinase II mediates some of the actions of Ca(2+) on the exocytosis of insulin. We therefore investigated the gene encoding the gamma isoform ( CAMK2G) which has been shown to be expressed in human beta cells as a candidate gene for Type II (non-insulin-dependent) diabetes mellitus.Human CAMK2G was cloned from a total human P1 artificial chromosome library using a partial Ca(2+)/calmodulin-dependent protein kinase gamma(E) cDNA probe. Positive PAC clones were localised to chromosome 10q22 by fluorescence in situ hybridisation. To obtain structural information and the sequences of the exon-intron boundaries, the published genomic structures of the rat and mouse genes allowed the putative exon-intron boundaries of human CAMK2G to be amplified by vectorette polymerase chain reaction and sequenced. Sequence variants in each exon were identified using single stranded conformational polymorphism analysis.The human CAMK2G gene comprises 22 exons which range in size between 43 to 230 bp. Screening of the exons and exon-intron boundaries identified two single nucleotide polymorphisms. These did not show association with diabetes in 122 patients and 144 control subjects.We have identified the genomic structure of CAMK2G to enable further study of this potential candidate gene. Variation in this gene is not strongly associated with diabetes in Caucasians in the United Kingdom. We have identified two single nucleotide polymorphisms which, with appropriately large case control studies, can be used to assess the role of CAMK2G in the susceptibility to Type II diabetes.

Topics
  • impedance spectroscopy
  • activation
  • Calcium
  • susceptibility