Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Roser, Christoph J.

  • Google
  • 1
  • 6
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Precision of slot widths and torque transmission of in-office 3D printed brackets6citations

Places of action

Chart of shared publication
Scheurer, Mats
1 / 1 shared
Lux, Christopher J.
1 / 1 shared
Bourauel, Christoph
1 / 8 shared
Hodecker, Lutz D.
1 / 1 shared
Bauer, Carolien A. J.
1 / 1 shared
Kretzer, J. Philippe
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Scheurer, Mats
  • Lux, Christopher J.
  • Bourauel, Christoph
  • Hodecker, Lutz D.
  • Bauer, Carolien A. J.
  • Kretzer, J. Philippe
OrganizationsLocationPeople

article

Precision of slot widths and torque transmission of in-office 3D printed brackets

  • Scheurer, Mats
  • Roser, Christoph J.
  • Lux, Christopher J.
  • Bourauel, Christoph
  • Hodecker, Lutz D.
  • Bauer, Carolien A. J.
  • Kretzer, J. Philippe
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Purpose</jats:title><jats:p>To investigate a novel in-office three-dimensionally (3D) printed polymer bracket regarding slot precision and torque transmission.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>Based on a 0.022″ bracket system, stereolithography was used to manufacture brackets (<jats:italic>N</jats:italic> = 30) from a high-performance polymer that met Medical Device Regulation (MDR) IIa requirements. Conventional metal and ceramic brackets were used for comparison. Slot precision was determined using calibrated plug gages. Torque transmission was measured after artificial aging. Palatal and vestibular crown torques were measured from 0 to 20° using titanium–molybdenum (T) and stainless steel (S) wires (0.019″ × 0.025″) in a biomechanical experimental setup. The Kruskal–Wallis test with post hoc test (Dunn–Bonferroni) was used for statistical analyses (significance level <jats:italic>p</jats:italic> &lt; 0.05).</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The slot sizes of all three bracket groups were within the tolerance range according to DIN 13996 (ceramic [C]: 0.581 ± 0.003 mm; metal [M]: 0.6 ± 0.005 mm; polymer [P]: 0.581 ± 0.010 mm). The maximum torque values of all bracket–arch combinations were above the clinically relevant range of 5–20 Nmm (PS: 30 ± 8.6 Nmm; PT: 27.8 ± 14.2 Nmm; CS: 24 ± 5.6 Nmm; CT: 19.9 ± 3.8 Nmm; MS: 21.4 ± 6.7 Nmm; MT: 16.7 ± 4.6 Nmm).</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>The novel, in-office manufactured polymer bracket showed comparable results to established bracket materials regarding slot precision and torque transmission. Given its high individualization possibilities as well as enabling an entire in-house supply chain, the novel polymer brackets bear high potential of future usage for orthodontic appliances.</jats:p></jats:sec>

Topics
  • molybdenum
  • polymer
  • stainless steel
  • mass spectrometry
  • titanium
  • aging
  • ceramic
  • size-exclusion chromatography
  • wire
  • aging