Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nitta, Muneto

  • Google
  • 2
  • 2
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Chiral magnets from string theory10citations
  • 2023Domain-wall skyrmions in chiral magnetscitations

Places of action

Chart of shared publication
Amari, Yuki
1 / 1 shared
Ross, Calum
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Amari, Yuki
  • Ross, Calum
OrganizationsLocationPeople

article

Chiral magnets from string theory

  • Amari, Yuki
  • Nitta, Muneto
Abstract

<jats:title>A<jats:sc>bstract</jats:sc></jats:title><jats:p>Chiral magnets with the Dzyaloshinskii-Moriya (DM) interaction have received quite an intensive focus in condensed matter physics because of the presence of a chiral soliton lattice (CSL), an array of magnetic domain walls and anti-domain walls, and magnetic skyrmions, both of which are important ingredients in the current nanotechnology. In this paper, we realize chiral magnets in type-IIA/B string theory by using the Hanany-Witten brane configuration (consisting of D3, D5 and NS5-branes) and the fractional D2 and D6 branes on the Eguchi-Hanson manifold. In the both cases, we put constant non-Abelian magnetic fluxes on higher dimensional (flavor) D-branes, turning them into magnetized D-branes. The <jats:italic>O</jats:italic>(3) sigma model with an easy-axis or easy-plane potential and the DM interaction is realized on the worldvolume of the lower dimensional (color) D-branes. The ground state is the ferromagnetic (uniform) phase and the color D-brane is straight when the DM interaction is small compared with the scalar mass. However, when the DM interaction is larger, the uniform state is no longer stable and the ground state is inhomogeneous: the CSL phases and helimagnetic phase. In this case, the color D-brane is no longer straight but is snaky (zigzag) when the DM interaction is smaller (larger) than a critical value. A magnetic domain wall in the ferromagnetic phase is realized as a kinky D-brane. We further construct magnetic skyrmions in the ferromagnetic phase, realized as D1-branes (fractional D0-branes) in the former (latter) configuration. We see that the host D2-brane is bent around the position of a D0-brane as a magnetic skyrmion. Finally, we construct, in the ferromagnetic phase, domain-wall skyrmions, that is, composite states of a domain wall and skyrmions, and find that the domain wall is no longer flat in the vicinity of the skyrmion. Consequently, a kinky D2-brane worldvolume is pulled or pushed in the vicinity of the D0-brane depending on the sign of the skyrmion topological charge.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • theory
  • composite
  • magnetic domain wall