Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dutta, R. K.

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2000Branching waveguides with truncated structure and phase matchingcitations

Places of action

Chart of shared publication
Das, A. K.
1 / 1 shared
Pandit, M. K.
1 / 1 shared
Ghosh, S.
1 / 67 shared
Chart of publication period
2000

Co-Authors (by relevance)

  • Das, A. K.
  • Pandit, M. K.
  • Ghosh, S.
OrganizationsLocationPeople

article

Branching waveguides with truncated structure and phase matching

  • Dutta, R. K.
  • Das, A. K.
  • Pandit, M. K.
  • Ghosh, S.
Abstract

We have studied mask based process for the microfabrication of polymeric (IXn) branching waveguides both theoretically and experimentaly. The simulation is based on the two-dimensional finite-difference beam propagation method (FDBPM) for the design of the waveguiding devices. The transmission efficiency of truncated structural Y-branch (TSYB) for wide angle (IX2) splitter with a full branching angle 2A greater than 2<sup>0</sup> is improved compared to that of normal Y-branch (NYB) structure. The maximum transmission at the output is obtained in phase matching between the inner and the outer paths at the point of bending of the truncated structure. An analysis for the optimum phase matching taking symmetric cladding refractive index at the branching zone, is made to improve the transmission efficiency η. For more output ports in (IXn) multiple branching waveguides it is observed that equal output power is not obtained for normal (IXn) branching waveguides. We have designed here a new truncated structural (IX3) branch [TS(IX3)B] structure for obtaining equal transmissions in higher branching angle structure using same phase matching consideration. Phase matching consideration is also followed in designing TS(IXn) B structures. We have fabricated the polymeric devices over Si-SiO<sub>2</sub> substrate. The cladding and the waveguiding layers are the Epoxy and PMMA/DRI, respectively. The thickness and refractive index of the waveguiding layers are controlled either by spinning speed or viscosity of the solution and its mixing ratio, respectively. The standard photolithography technique is used here with positive resist coating and followed by dry plasma etching in presence of oxygen. Experiments for the transmission efficiency of the devices are made and compared with the theoretical values.

Topics
  • impedance spectroscopy
  • phase
  • experiment
  • simulation
  • Oxygen
  • viscosity
  • two-dimensional
  • spinning
  • plasma etching