People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mccarthy, Michael John
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Mechanical processing of wet stored fly ash for use as a cement component in concrete
- 2022Impact of fly ash production and sourcing changes on chemical and physical aspects of concrete durabilitycitations
- 2022Influence of wet storage on fly ash reactivity and processing for use in concretecitations
- 2021Potential of Weathered Blast Furnace Slag for use as an Addition in Concretecitations
- 2019Pozzolanas and pozzolanic materialscitations
- 2017Evaluation of Fly Ash Reactivity Potential Using a Lime Consumption Testcitations
- 2015Influence of Portland cement characteristics on air-entrainment in fly ash concretecitations
- 2013Evaluating Test Methods for Rapidly Assessing Fly Ash Reactivity for Use in Concrete
- 2011Fly Ash Route to Low Embodied CO2 and Implications for Concrete Construction
- 2010Mechanisms of sulfate heave prevention in lime stabilized clays through pozzolanic additionscitations
- 2009Experiences of Processing Fly Ashes Recovered from United Kingdom Stockpiles and Lagoons, their Characteristics and Potential End Uses
- 2007Utilising Class F Fly Ash to Offset Non-ideal Aggregate Characteristics for Concrete in Chloride Environments
- 2004Comparative performance of chloride attenuating and corrosion inhibiting systems for reinforced concretecitations
- 2003Moving Fly Ash Utilisation in Concrete Forward
- 2001Specifying concrete for chloride environments using controlled permeability formworkcitations
Places of action
Organizations | Location | People |
---|
article
Specifying concrete for chloride environments using controlled permeability formwork
Abstract
<p>The paper describes a study carried out to explore how controlled permeability formwork (CPF) can be used within existing concrete durability specifications (mix limitations) for chloride environments. Tests were carried out to consider (i) chloride diffusion rates and, under wetting and drying conditions, (ii) rates of chloride contamination build up at cover depth and (iii) reinforcement corrosion. The effects of CPF were measured against design strength, cover depth and cement type of concrete cast against plywood formwork (impermeable formwork - IMF). The use of CPF liner on formwork was found to significantly enhance chloride and corrosion resistance of concrete. Moreover, the results demonstrated that CPF could be used within the BS 5328 durability framework for chloride environments to allow either a 20 mm cover reduction (50 to 30 mm) at fixed design strength (40 N/mm<sup>2</sup>), or a reduction in design strength of 10 N/mm<sup>2</sup> (50 to 40 N/mm<sup>2</sup>) at fixed cover depth (30 mm). It was additionally found for Portland cement (PC) concrete that the use of CPF gave equivalent performance to concretes containing PFA and GGBS as constituents of cement and a ternary cement comprising both materials, cast against plywood formwork. This suggests that the 'trade offs' within BS 8500 for PC/PFA and PC/GGBS cements in chloride environments, could also be permitted for CPF concrete containing PC.</p>