Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hirz, Mario

  • Google
  • 2
  • 8
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Root Cause Analysis in Lithium-Ion Battery Production with FMEA-Based Large-Scale Bayesian Networkcitations
  • 2012An application of enhanced 3D-CAD methods with integrated geometry creation algorithms for PVC-seams in automotive body in white design1citations

Places of action

Chart of shared publication
Thiede, Sebastian
1 / 12 shared
Kirchhof, Michael
1 / 1 shared
Kornas, Thomas
1 / 1 shared
Herrmann, Christoph
1 / 31 shared
Haas, Klaus
1 / 1 shared
Frener, Gernot
1 / 1 shared
Thum, Katharina
1 / 1 shared
Harrich, Alexander
1 / 1 shared
Chart of publication period
2020
2012

Co-Authors (by relevance)

  • Thiede, Sebastian
  • Kirchhof, Michael
  • Kornas, Thomas
  • Herrmann, Christoph
  • Haas, Klaus
  • Frener, Gernot
  • Thum, Katharina
  • Harrich, Alexander
OrganizationsLocationPeople

article

An application of enhanced 3D-CAD methods with integrated geometry creation algorithms for PVC-seams in automotive body in white design

  • Hirz, Mario
  • Frener, Gernot
  • Thum, Katharina
  • Harrich, Alexander
Abstract

State of the art automotive development processes are based on virtual product models, which include a digital representation of complete vehicle geometry and structures. Increasing computation performance and continuously growing demands on virtual development processes lead to the application of precise product representation within common CAD software packages. A specific challenge represents the creation of PVC-seams, which are used for corrosion protection of sheet metal components in automotive body in white design. Besides the high requirements of accurate geometric modeling in digital representation, modern development processes call for an increasing level of design automation. To fit both, the present approach introduces a method for an automatic generation of PVC-seams using the functionalities of commercial CAD software.

Topics
  • corrosion
  • collision-induced dissociation